Skip to main content
Log in

Amorphous phase-segregated copoly(ether)esterurethane thermoset networks with oligo(propylene glycol) and oligo[(rac-lactide)-co-glycolide] segments: synthesis and characterization

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Completely amorphous copoly(ether)ester networks based on oligo(propylene glycol) and oligo[(rac-dilactide)-co-glycolide] segments were synthesized by crosslinking star-shaped hydroxyl-telechelic cooligomers using an aliphatic low-molecular weight diisocyanate. Two different network architectures were applied exhibiting differences in the phase-separation behavior. For networks from oligo(propylene glycol)-block-oligo[(rac-lactide)-co-glycolide] triols (G3OPG-bl-OLG) only one glass transition was obtained. However, networks from a mixture of oligo(propylene glycol) triols (G3OPG) and oligo[(rac-lactide)-co-glycolide] tetrols (P4OLG) with a ratio of components in a certain range show two glass transition temperatures (T g) being attributed to two segregated amorphous phases. In this way a wide spectrum of mechanical properties can be realized and adjusted to the requirements of a specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roby MS, Kennedy J Sutures. Biomaterial Science: An Introduction to Materials in Medicine. San Diego: Elsevier; 2004. p. 615.

  2. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6. doi:10.1126/science.8493529.

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Li SM. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48:342–53. doi:10.1002/(SICI)1097-4636(1999)48:3<342::AID-JBM20>3.0.CO;2-7.

    Article  PubMed  CAS  Google Scholar 

  4. Jabbal-Gill I, Lin W, Kistner O, Davis SS, Illum L. Polymeric lamellar substrate particles for intranasal vaccination. Adv Drug Deliv Rev. 2001;51:97–111. doi:10.1016/S0169-409X(01)00173-9.

    Article  PubMed  CAS  Google Scholar 

  5. Witschi C, Doelker E. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. J Control Release. 1998;51:327–41. doi:10.1016/S0168-3659(97)00188-0.

    Article  PubMed  CAS  Google Scholar 

  6. Edelman ER, Nathan A, Katada M, Gates J, Karnovsky MJ. Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials. 2000;21:2279–86. doi:10.1016/S0142-9612(00)00154-X.

    Article  PubMed  CAS  Google Scholar 

  7. Choi NY, Lendlein A. Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter. 2007;3:1–10. doi:10.1039/b702515g.

    Article  Google Scholar 

  8. Bertmer M, Buda A, Blomenkamp-Höfges I, Kelch S, Lendlein A. Biodegradable shape-memory polymer networks: characterization with solid-state NMR. Macromolecules. 2005;38:3793–9. doi:10.1021/ma0501489.

    Article  ADS  CAS  Google Scholar 

  9. Storey RF, Hickey TP. Degradable polyurethane networks based on d,l-lactide, glycolide, e-caprolactone and trimethylene carbonate homopolyester and copolyester triols. Polymer (Guildf). 1994;35:830–8. doi:10.1016/0032-3861(94)90882-6.

    Article  CAS  Google Scholar 

  10. Kelch S, Choi NY, Wang Z, Lendlein A. Amorphous, elastic AB copolymer networks from acrylates and poly[(l-lactide)-ran-glycolide]dimethacrylates. Adv Eng Mater. 2008;10:494–502. doi:10.1002/adem.200700339.

    Article  CAS  Google Scholar 

  11. Choi NY, Kelch S, Lendlein A. Synthesis, shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv Eng Mater. 2006;8:439–45. doi:10.1002/adem.200600020.

    Article  CAS  Google Scholar 

  12. Smith SW, Freeman BD, Hall CK. Pressure-dependent photon correlation spectroscopic investigation of poly(propylene oxide) near the glass transition. Macromolecules. 1997;30:2052–7. doi:10.1021/ma960408+.

    Article  ADS  CAS  Google Scholar 

  13. Alteheld A, Feng YK, Kelch S, Lendlein A. Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew Chem Int Ed. 2005;44:1188–92. doi:10.1002/anie.200461360.

    Article  CAS  Google Scholar 

  14. Amsden B. Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter. 2007;3:1335–48. doi:10.1039/b707472g.

    Article  CAS  Google Scholar 

  15. Helminen A, Korhonen H, Seppälä JV. Biodegradable crosslinked polymers based on triethoxysilane terminated polylactide oligomers. Polymer (Guildf). 2001;42:3345–53. doi:10.1016/S0032-3861(00)00708-4.

    Article  CAS  Google Scholar 

  16. Hild G. Model networks based on ‘endlinking’ processes: Synthesis, structure and properties. Prog Polym Sci. 1998;23:1019–149. doi:10.1016/S0079-6700(97)00055-5.

    Article  CAS  Google Scholar 

  17. Palmgreen R, Karlsson S, Albertsson A-C. Synthesis of degradable crosslinked polymers based on 1, 5-dioxepan-2-one and crosslinker of bis-e-caprolactone type. J Polym Sci Part Polym Chem. 1997;35:1635–49. doi:10.1002/(SICI)1099-0518(19970715)35:9<1635::AID-POLA5>3.0.CO;2-Q.

    Article  Google Scholar 

  18. Pitt CG, Hendren RW, Schindler A, Woodward SC. The enzymatic surface erosion of aliphatic polyesters. J Control Release. 1984;1:3–14. doi:10.1016/0168-3659(84)90016-6.

    Article  CAS  Google Scholar 

  19. Valette L, Hsu CP. Polyurethane and unsaturated polyester hybrid networks: 2: influence of hard domains on mechanical properties. Polymer (Guildf). 1999;40:2059–70. doi:10.1016/S0032-3861(98)00428-5.

    Article  CAS  Google Scholar 

  20. Younes HM, Bravo-Grimaldo E, Amsden BG. Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials. 2004;25:5261–9. doi:10.1016/j.biomaterials.2003.12.024.

    Article  PubMed  CAS  Google Scholar 

  21. Lendlein A, Neuenschwander P, Suter UW. Hydroxy-telechelic copolyesters with well defined sequence structure through ring-opening polymerization. Macromol Chem Phys. 2000;201:1067–76. doi:10.1002/1521-3935(20000701)201:11<1067::AID-MACP1067>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  22. Yamaguchi K, Anderson JM. In vivo biocompatibility studies of medisorb® 65/35 d,l-lactide/glycolide copolymer microspheres. J Control Release. 1993;26:81–93. doi:10.1016/0168-3659(93)90169-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotzmann, J., Alteheld, A., Behl, M. et al. Amorphous phase-segregated copoly(ether)esterurethane thermoset networks with oligo(propylene glycol) and oligo[(rac-lactide)-co-glycolide] segments: synthesis and characterization. J Mater Sci: Mater Med 20, 1815–1824 (2009). https://doi.org/10.1007/s10856-009-3761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3761-x

Keywords

Navigation