Skip to main content
Log in

Effect of HCl concentrations on apatite-forming ability of NaOH–HCl- and heat-treated titanium metal

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium (Ti) metal was treated with water or HCl solutions after 5 M NaOH solution treatment and then subjected to heat treatment at 600°C. The apatite-forming abilities of the treated Ti metals were examined in simulated body fluid. The apatite-forming ability of the Ti metal subjected to NaOH, water and heat treatment was lower than that of just NaOH and heat treatments. Ti metals subjected to NaOH, HCl and heat treatment showed apatite-forming abilities, which increased with increasing HCl concentrations up to the same level as that of NaOH- and heat-treated Ti metal. The former did not show a decrease in its apatite-forming ability, even in a humid environment for a long period, whereas the latter decreased its ability. The increase in the apatite-forming ability with increasing HCl concentrations suggests a different mechanism of apatite formation from that previously proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloy via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409–17. doi:10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B.

    Article  CAS  PubMed  Google Scholar 

  2. Nishiguchi S, Fujibayashi S, Kim HM, Kokubo T, Nakamura T. Biology of alkali- and heat-treated titanium implants. J Biomed Mater Res. 2003;67A:26–35.

    Article  CAS  Google Scholar 

  3. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T. Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal. J Biomed Mater Res (Appl Biomater). 2002;63:522–30. doi:10.1002/jbm.10304.

    Article  CAS  Google Scholar 

  4. Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim HM, et al. Bioactive titanium: Effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J Biomed Mater Res. 2001;56:562–70. doi:10.1002/1097-4636(20010915)56:4<562::AID-JBM1128>3.0.CO;2-M.

    Article  CAS  PubMed  Google Scholar 

  5. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25:443–50. doi:10.1016/S0142-9612(03)00551-9.

    Article  CAS  PubMed  Google Scholar 

  6. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Matsushita T, Kokubo T, et al. Osteoinductive porous titanium implants: Effect of sodium removal by dilute HCl treatment. Biomaterials. 2006;27:2682–91. doi:10.1016/j.biomaterials.2005.12.014.

    Article  CAS  PubMed  Google Scholar 

  7. Takemoto M, Fujibayashi S, Neo M, So K, Akiyama N, Matsushita T, et al. A porous bioactive titanium implant for spinal interbody fusion: an experimental study using a canine model. J Neurosurg Spine. 2007;7:435–43. doi:10.3171/spi.2007.7.4.435.

    Article  PubMed  Google Scholar 

  8. Bruijn JDD, Shankar K, Yuan H, Habibovic P. Osteoinduction and its evaluation. In: Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing Ltd.; 2008. p. 199.

    Google Scholar 

  9. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15. doi:10.1016/j.biomaterials.2006.01.017.

    Article  CAS  PubMed  Google Scholar 

  10. Wang XX, Hayakawa S, Tsuru K, Osaka A. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials. 2002;23:1353–7. doi:10.1016/S0142-9612(01)00254-X.

    Article  CAS  PubMed  Google Scholar 

  11. Wang XX, Yan W, Hayakawa S, Tsuru K, Osaka A. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials. 2003;24:4631–7. doi:10.1016/S0142-9612(03)00357-0.

    Article  CAS  PubMed  Google Scholar 

  12. Uchida M, Kim HM, Kokubo T, Fujibashi S, Nakamura T. Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res. 2003;64A:164–70.

    Article  CAS  Google Scholar 

  13. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25:1003–10. doi:10.1016/S0142-9612(03)00626-4.

    Article  CAS  PubMed  Google Scholar 

  14. Rohanizadeh R, Al-Sadeq M, LeGeros RZ. Preparation of different forms of titanium oxide on titanium surface: effects on apatite deposition. J Biomed Mater Res. 2004;71A:343–52. doi:10.1002/jbm.a.30171.

    Article  CAS  Google Scholar 

  15. Wu JM, Hayakawa S, Tsuru K, Osaka A. Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. J Am Ceram Soc. 2004;87:1635–42.

    Article  CAS  Google Scholar 

  16. Zhao X, Liu X, Ding X,C. Acid induced bioactive titania surface. J Biomed Mater Res. 2005;75A:888–94. doi:10.1002/jbm.a.30485.

    Article  CAS  Google Scholar 

  17. Lu X, Zhao Z, Leng Y. Biomimetic calcium phosphate coatings on nitric acid treated titanium surfaces. Mater Sci Eng C. 2007;27:700–8. doi:10.1016/j.msec.2006.06.030.

    Article  CAS  Google Scholar 

  18. Lee MH, Park IS, Min KS, Ahn SG, Park JM, Song KY, et al. Evaluation of in vitro and in vivo tests for surface modified Titanium by H2SO4 and H2O2 treatment. Metals Mater Int. 2007;13:109–15.

    Article  CAS  Google Scholar 

  19. Lu X, Wang Y, Yang X, Zhang Q, Zhao Z, Weng LT, et al. Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviors in vitro and in vivo. J Biomed Mater Res. 2008;84A:523–34. doi:10.1002/jbm.a.31471.

    Article  CAS  Google Scholar 

  20. Zhao X, Liu X, You J, Chen Z, Ding C. Bioactivity and cytocompatibility of plasma-sprayed titania coating treated by sulfuric acid treatment. Surf Coat Technol. 2008;202:3221–6. doi:10.1016/j.surfcoat.2007.11.026.

    Article  CAS  Google Scholar 

  21. Lindberg F, Heinrichs J, Ericson F, Thomsen P, Engqvist H. Hydroxylapatite growth on single-crystal rutile substrates. Biomaterials. 2008;29:3317–23. doi:10.1016/j.biomaterials.2008.04.034.

    Article  CAS  PubMed  Google Scholar 

  22. Sugino A, Ohtsuki C, Tsuru K, Hayakawa S, Nakano T, Okazaki Y, et al. Effect of spatial design and thermal oxidation on apatite formation on Ti–15Zr–4Ta–4Nb alloy. Acta Biomater. 2009;5:298–304. doi:10.1016/j.actbio.2008.07.014.

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J. 2003;9:2229–38. doi:10.1002/chem.200204394.

    Article  CAS  Google Scholar 

  24. Tsai CC, Teng H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater. 2006;18:367–73. doi:10.1021/cm0518527.

    Article  CAS  Google Scholar 

  25. Kim HM, Himeno T, Kawashita M, Lee JH, Kokubo T, Nakamura T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J Biomed Mater Res. 2003;67A:1305–9.

    Article  CAS  Google Scholar 

  26. Takagi H, Kokubo T, Tashiro M. Alkaline durability of Na2O–BaO–Al2O3–TiO2 glasses. J Ceram Assoc Jpn. 1981;89:418–26.

    CAS  Google Scholar 

  27. Kokubo T, Takagi H, Tashiro M. Alkaline durability of BaO–TiO2–SiO2 glasses. J Non-Cryst Solids. 1982;52:427–33.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak K. Pattanayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattanayak, D.K., Kawai, T., Matsushita, T. et al. Effect of HCl concentrations on apatite-forming ability of NaOH–HCl- and heat-treated titanium metal. J Mater Sci: Mater Med 20, 2401–2411 (2009). https://doi.org/10.1007/s10856-009-3815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3815-0

Keywords

Navigation