Skip to main content
Log in

Functionalized bridged silsesquioxane-based nanostructured microspheres: ultrasound-assisted synthesis and in vitro cytotoxicity characterization

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Different kinds of polymers have been employed in medicine as biomaterials for different purposes. In recent years, considerable attention has been focused on the development of new drug-delivery systems in order to increase bio-availability, sustain, localize and target drug action in the human body. The versatility of the sol–gel processing to synthesize nanostructured materials and the possibility of incorporating organic molecules into the matrix of the final hybrid material, represent a novel and attractive path to the synthesis of new functionalized hybrid biomaterials with advanced properties. In this work, acetylsalicylic acid (ASA)-functionalized hybrid microspheres based on bridged silsesquioxanes synthesized via ultrasound-assisted sol–gel processing, were characterized. An investigation concerning the cytotoxic response of these new microspheres on CHO-K1 cells was accomplished based on ISO 10993-5 standard (Biological Evaluation of Medical Devices). Microspheres incorporating ASA showed a cytotoxic effect when pure extracts of the microspheres were analyzed, however, they strongly diminished their cytotoxicity as the extracts were diluted. When a 10% concentration extract was employed, hybrid microspheres were shown to be non cytotoxic. These results are promising for considering these novel functionalized organic–inorganic microspheres as potential drug-carriers to be employed in drug delivery-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parejo C, Gallardo A, San Román J. HEMA-based methacrylic carriers incorporating ketoprofen: chain flexibility and swelling behaviour. J Biomater Sci Polym Ed. 2000;11:1429–41.

    Article  CAS  Google Scholar 

  2. Parejo C, Gallardo A, San Román J. Controlled release of NSAIDs bound to polyacrylic carrier systems. J Mater Sci Mater Med. 1998;9:803–9.

    Article  CAS  Google Scholar 

  3. Alfabrouchard C, Doelker E. Méthode de préparation des microparticules biodégradables chargées en principes actifs hydrosolubles. STP Pharma Sci. 1992;2:365–80.

    Google Scholar 

  4. Jameela SR, Suma N, Jayakrishnan A. Protein release from poly(ε-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study. J Biomater Sci Polym Ed. 1997;8:457–66.

    Article  CAS  Google Scholar 

  5. Guzman M, Molpeceres J, Garcia F, Aberturas MR. Preparation, characterization and in vitro drug release of poly-ε-caprolactone and hydroxypropyl methylcellulose phthalate ketoprophen loaded microspheres. J Microencapsul. 1996;13:25–39.

    Article  CAS  Google Scholar 

  6. Arshady A. Preparation of biodegradable microspheres and microcapsules: 2. Polyactides and related polyesters. J Control Release. 1991;17:1–22.

    Article  CAS  Google Scholar 

  7. Elvira C, Fanovich A, Fernández M, Fraile J, San Román J, Domingo C. Evaluation of drug delivery characteristics of microspheres of PMMA-PCL-cholesterol obtained by supercritical-CO2 impregnation and by dissolution-evaporation techniques. J Control Release. 2004;99:231–40.

    Article  CAS  Google Scholar 

  8. Abetz V, Simon PFW. Phase behaviour and morphologies of block copolymers. Adv Polym Sci. 2005;189:125–212.

    Article  CAS  Google Scholar 

  9. Gohy JF. Block copolymer micelles. Adv Polym Sci. 2005;190:65–136.

    Article  CAS  Google Scholar 

  10. Segalman RA. Pattering with block copolymer thin films. Mater Sci Eng R. 2005;48:191–226.

    Article  Google Scholar 

  11. Mori H, Lanzendörfer MG, Müller AHE. Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules. 2004;37:5228–38.

    Article  CAS  Google Scholar 

  12. Shea KJ, Loy DA. Bridged polysilsesquioxanes: molecular engineering of hybrid organic-inorganic materials. MRS Bull. 2001;26:368–76.

    Article  CAS  Google Scholar 

  13. Shea KJ, Loy DA. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem Mater. 2001;13:3306–19.

    Article  CAS  Google Scholar 

  14. Moreau JJE, Vellutini L, Wong Chi Man M, Bied C, Dieudonné P, Bantignies JL, Sauvajol JL. Lamellar bridged silsesquioxanes: self-assembly through a combination of hydrogen bonding and hydrophobic interactions. Chem Eur J. 2005;11:1527–37.

    Article  CAS  Google Scholar 

  15. Romeo HE, Fanovich MA, Williams RJJ, Matejka L, Plestil J, Brus J. Bridged silsesquioxanes with organic domains self-assembled as functionalized molecular channels. Macromol Chem Phys. 2007;208:1202–9.

    Article  CAS  Google Scholar 

  16. Jeong JC, Lee J, Cho K. Effects of crystalline structure on drug release behavior of poly(ε-caprolactone) microspheres. J Control Release. 2003;92:249–58.

    Article  CAS  Google Scholar 

  17. Liu S, Lang X, Ye H, Zhang S, Zhao J. Preparation and characterization of copolymerized aminopropyl/phenylsilsesquioxane microparticles. Eur Polym J. 2005;41:996–1001.

    Article  CAS  Google Scholar 

  18. Moreau JJE, Pichon BP, Bied C, Wong Chi Man M. Structuring of bridged silsesquioxanes via cooperative weak interactions: H-bonding of urea groups and hydrophobic interactions of long alkylene chains. J Mater Chem. 2005;15:3929–36.

    Article  CAS  Google Scholar 

  19. Suslick KS. Sonochemistry. Science. 1990;247:1439–45.

    Article  CAS  Google Scholar 

  20. Suslick KS, Didenko Y, Fang MF, Hyeon T, Kolbeck KJ, McNamara WB, Mdleleni MM, Wong M. Acoustic cavitation and its chemical consequences. Phil Trans R Soc Lond A. 1999;357:335–53.

    Article  CAS  Google Scholar 

  21. Dai C, Wang B, Zhao H. Microencapsulation peptide and protein drugs delivery system. Colloids Surf B Biointerfaces. 2005;41:117–20.

    Article  CAS  Google Scholar 

  22. Suslick KS, Grinstaff MW, Kolbeck KJ, Wong M. Characterization of sonochemically prepared proteinaceous microspheres. Ultrason Sonochem. 1994;1:565–8.

    Article  Google Scholar 

  23. Romeo HE, Fanovich MA, Williams RJJ, Matejka L, Plestil J, Brus J. Self-assembly of a bridged silsequioxane containing a pendant hydrophobic chain in the organic bridge. Macromoleculaes. 2007;40:1435–43.

    Article  CAS  Google Scholar 

  24. International standard: biological evaluation of medical devices – Part 5: tests for cytotoxicity: in vitro methods. ISO 10993-5, 1992.

  25. Rikowski E, Marsmann HC. Cage-rearrangement of silsesquioxanes. Polyhedron. 1997;16:3357–61.

    Article  CAS  Google Scholar 

  26. Feher FJ, Soulivong D, Nguyen F. Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R8Si8O12 framework. Chem Commun 1998;1279–80.

  27. Matejka L, Dukh O, Brus J, Simonsick WJ Jr, Meissner B. Cage-like structure formation during sol-gel polymerization of glycidyloxypropyltrimethoxysilane. J Non Cryst Solids. 2000;270:34–47.

    Article  CAS  Google Scholar 

  28. Hench LL, Wilson J. An introduction to bioceramics, Advanced series in ceramics, vol. 1. Singapore: World Scientific Publishing Co. Pte. Ltd.; 1993. Editors in-chief: McLaren and Niesz.

  29. Ramila A, Vallet-Regi M. Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials. 2001;22:2301–6.

    Article  CAS  Google Scholar 

  30. Fasce DP, Williams RJJ, Matejka L, Plestil J, Brus J, Serrano B, Cabanelas JC, Baselga J. Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation. Macromolecules. 2006;39:3794–801.

    Article  CAS  Google Scholar 

  31. Romeo HE, Fanovich MA, Williams RJJ, Matejka L, Plestil J, Brus J. Fast synthesis of nanostructured microspheres of a bridged silsesquioxane via ultrasound-assisted sol-gel processing. Macromol Chem Phys. 2009;210:172–8.

    CAS  Google Scholar 

  32. Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. New York: Academic Press; 1975.

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank the financial support of the following institutions: National Research Council (CONICET, Argentina), National Agency for the Promotion of Science and Technology (ANPCyT, Argentina) and University of Mar del Plata (Argentina). Authors would also like to thank Libor Matějka, Josef Pleštil and Jiří Brus (Institute of Macromolecular Chemistry, Czech Republic) for the 29Si NMR and SAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán E. Romeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, H.E., Cameo, M., Choren, M.V. et al. Functionalized bridged silsesquioxane-based nanostructured microspheres: ultrasound-assisted synthesis and in vitro cytotoxicity characterization. J Mater Sci: Mater Med 22, 935–943 (2011). https://doi.org/10.1007/s10856-011-4261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4261-3

Keywords

Navigation