Skip to main content

Advertisement

Log in

Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The in vitro corrosion behavior and biocompatibility of two Zr alloys, Zr-2.5Nb, employed for the manufacture of CANDU reactor pressure tubes, and Zr-1.5Nb-1Ta (at%), for use as implant materials have been assessed and compared with those of Grade 2 Ti, which is known to be a highly compatible metallic biomaterial. The in vitro corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy (EIS) measurements, as a function of exposure time to an artificial physiological environment (Ringer’s solution). Open circuit potential values indicated that both the Zr alloys and Grade 2 Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Zr-1.5Nb-1Ta alloy and that this oxide has better corrosion protection characteristics than the ones formed on Grade 2 Ti or on the Zr-2.5Nb alloy. EIS study showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film presents on the metals surface, improving their resistance with exposure time, presenting the highest values to the Zr-1.5Nb-1Ta alloy. For the biocompatibility analysis human osteosarcoma cell line (Saos-2) and human primary bone marrow stromal cells (BMSC) were used. Biocompatibility tests showed that Saos-2 cells grow rapidly, independently of the surface, due to reduced dependency from matrix deposition and microenvironment recognition. BMSC instead display a reduced proliferation, possibly caused by a reduced crosstalk with the metal surface microenvironment. However, once the substrate has been colonized, BMSC seem to respond properly to osteoinduction stimuli, thus supporting a substantial equivalence in the biocompatibility among the Zr alloys and Grade 2 titanium. In summary, high in vitro corrosion resistance together with satisfactory biocompatibility make the Zr-2.5Nb and Zr-1.5Nb-1Ta crystalline alloys promising biomaterials for surgical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lohrengel MM. Formation of ionic space charge layers in oxide films on valve metals. Electrochim Acta. 1994;39:1265.

    Article  CAS  Google Scholar 

  2. Malik F. A study of passive films on valve metals. Thin Solid Films. 1991;206:345.

    Article  CAS  Google Scholar 

  3. Bockris JOM. Modern aspect of electrochemistry, vol. 14. New York: Plenum Press; 1982.

    Google Scholar 

  4. Badawy WA, Felske A, Plieth WJ. Electrochemical, photoelectrochemical behaviour of passivated Ti, Nb electrodes in nitric acid solutions. Electrochim Acta. 1989;34:1711.

    Article  CAS  Google Scholar 

  5. Biaggio SR, Rocha-Filho RC, Vilche JR, Varela FE, Gassa LM. A study of thin anodic WO3 films by electrochemical impedance spectroscopy. Electrochim Acta. 1997;42:1751.

    Article  CAS  Google Scholar 

  6. Marino CEB, Oliveira EM, Rocha-Filho RC, Biaggio SR. On the stability of thin-anodic-oxide films of titanium in acid phosphoric media. Corros Sci. 2001;43:1465.

    Article  CAS  Google Scholar 

  7. Salot R, Lefevbre-Joud F, Baroux B. Electrochemical behavior of thin anodic oxide films on Zircaloy-4. J Electrochem Soc. 1996;143:3902.

    Article  CAS  Google Scholar 

  8. Hammad AM, El-Mashri SM, Nasr MA. Mechanical properties of the Zr-1% Nb alloy at elevated temperatures. J Nuclear Mater. 1992;186:166.

    Article  CAS  Google Scholar 

  9. Oliveira NTC, Biaggio SR, Rocha-Filho RC, Bocchi N. Studies on the stability of anodic oxides on zirconium biocompatible alloys. J Braz Chem Soc. 2002;13:463.

    CAS  Google Scholar 

  10. Pourbaix M. Electrochemical corrosion of metallic biomaterials. Biomaterials. 1984;5:122.

    Article  CAS  Google Scholar 

  11. Biehl V, Breme J. Metallic biomaterials. Mat-wiss u Werkstoff-tech. 2001;32:137.

    Article  CAS  Google Scholar 

  12. Niinomi M, Kuroda D, Fukunaga K, Morinaga M, Kato Y, Yashiro T, Suzuki A. Corrosion wear fracture of new β type biomedical titanium alloys. Mater Sci Eng A. 1999;263:193.

    Article  Google Scholar 

  13. Okazaki Y, Rao S, Tateishi T, Ito Y. Cytocompatibility of various metals and development of new titanium alloys for medical implants. Mater Sci Eng A. 1998;243:250.

    Article  Google Scholar 

  14. Bjursten LM, Emanuelsson L, Ericson LE, Thomsen P, Lausmaa J, Mattson L, Rolander U, Kasemo B. Method for ultrastructural studies of the intact tissue-metal interface. Biomaterials. 1990;11:596.

    Article  CAS  Google Scholar 

  15. Thompsen P, Larsson C, Ericson LE, Sennerby L, Lausmaa J, Kasemo B. Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci: Mater Med. 1997;8:653.

    Article  Google Scholar 

  16. Sherepo KM, Red’ko IA. Use of zirconium for implants in traumatology and orthopedics. Med Tekh. 2004;2:22.

    Google Scholar 

  17. Cabrini RL, Guglielmotti MB, Almagro JC. Histomorphometry of initial bone healing around zirconium implants in rats. Implant Dent. 1993;2:264.

    Article  CAS  Google Scholar 

  18. Guglielmotti MB, Cabrini RL, Guerrero C. Chronodynamic evaluation of the stages of osseointegration in zirconium laminar implants. Acta Odontol Latinoam. 1997;10:11.

    CAS  Google Scholar 

  19. Guglielmotti MB, Cabrini RL, Renou S. A histomorphometric study of tissue interface by laminar test in rats. Int J Oral Maxillofac Implants. 1999;14:565.

    CAS  Google Scholar 

  20. Kulokaov OB, Doktorov AA, D’iakova SV, Denisov-Nikol’skii IuI, Grotz KA. Experimental study of osseointegration of zirconium and titanium dental implants. Morfologiia. 2005;127:52.

    Google Scholar 

  21. Cox B. Advances in corrosion science and technology, vol. 5. New York: Plenum Press; 1976.

    Google Scholar 

  22. Yun YH, Turitto VT, Daigle KP, Kovacs P, Davidson JA, Slack SM. Initial, hemocompatibility studies of titanium and zirconium alloys: Prekallikrein activation, fibrinogen adsorption, and their correlation with surface electrochemical properties. J Biomed Mater Res. 1996;32:77.

    Article  CAS  Google Scholar 

  23. Helsen JA, Breme J. Metals as biomaterials. Chichester, England: Wiley; 1998.

    Google Scholar 

  24. Matsuno H, Yokoyama A, Watary F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253.

    Article  CAS  Google Scholar 

  25. Gerardi S. ASTM Handbook, vol. 2. Metals Park: ASM International; 1993.

    Google Scholar 

  26. Eisenbarth E, Velten D, Müller M, Thull R, Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705.

    Article  CAS  Google Scholar 

  27. Branzoi IV, Iordoc M, Codescu M. Electrochemical studies on the stability and corrosion resistance of new zirconium-based alloys for biomedical applications. Surf Interface Anal. 2008;40:167.

    Article  CAS  Google Scholar 

  28. Yto A, Okazaki Y, Tateishi T, Ito Y. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials. J Biomed Mater Res. 1995;29:943.

    Article  Google Scholar 

  29. Khan MA, Williams RL, Williams DF. In vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials. 1996;17:2117.

    Article  CAS  Google Scholar 

  30. Rosalbino F, Macciò D, Saccone A, Angelini E, Delfino S. Effect of Nb alloying additions on the characteristics of anodic oxide films on zirconium and their stability in NaOH solution. J Solid State Electrochem. 2010;14:1451.

    Article  CAS  Google Scholar 

  31. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, Shull S, Mann K, Rodan GA. Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res. 1987;47:4961.

    CAS  Google Scholar 

  32. Giannoni P, Muraglia A, Giordano C, Narcisi R, Cancedda R, Quarto R, Chiesa R. Osteogenic differentiation of human mesenchymal stromal cells on surface-modified titanium alloys for orthopedic and dental implants. Int J Artif Organs. 2009;32:811.

    CAS  Google Scholar 

  33. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci. 2000;113:1161.

    CAS  Google Scholar 

  34. Zerega B, Cermelli S, Bianco P, Cancedda R, Cancedda FD. Parathyroid hormone [PTH(1–34)] and parathyroid hormone-related protein [PTHrP(1–34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells. J Bone Miner Res. 1999;14(8):1281.

    Article  CAS  Google Scholar 

  35. Abriata JP, Bolcich JC. The Nb–Zr (Niobium–Zirconium) system. Bull Alloy Phase Diag. 1982;3(1):34.

    Article  Google Scholar 

  36. Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams. Metals Park, Ohio: ASM International; 1995.

    Google Scholar 

  37. Metikos-Hukovic M, Kwokal A, Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials. 2003;24:3765.

    Article  CAS  Google Scholar 

  38. Oliveira NTC, Aleixo G, Caram R, Guastaldi AC. Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization. J Mater Sci Eng A. 2007;452–453:727.

    Article  Google Scholar 

  39. Temiselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4 V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006;52:839.

    Article  Google Scholar 

  40. Gonzalez JEG, Mirza-Rosca JC. Study of the corrosion behaviour of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471:109.

    Article  CAS  Google Scholar 

  41. Shukla AK, Balasubramaniam R. Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4 V and Ti-13Nb-13Zr alloys in simulated human body fluid. Corros Sci. 2006;48:1696.

    Article  CAS  Google Scholar 

  42. Oliveira NTC, Biaggio SR, Piazza S, Sunseri C, Di Quarto F. Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys. Electrochim Acta. 2004;49:4563.

    Article  CAS  Google Scholar 

  43. Martins DQ, Osório WR, Souza MEP, Caram R, Garcia A. Effect of Zr content on microstructure and corrosion resistance of Ti-30Nb-Zr casting alloys for biomedical applications. Electrochim Acta. 2008;53:2809.

    Article  CAS  Google Scholar 

  44. Macdonald JR. Impedance spectroscopy. New York: Wiley; 1987.

    Google Scholar 

  45. Mackie EJ, Ramsey SJ. Modulation of osteoblast behaviour by tenascin. Cell Sci. 1996;106:1597.

    Google Scholar 

  46. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13(1):81.

    Article  CAS  Google Scholar 

  47. Braccini A, Wendt D, Jaquiery C, Jakob M, Heberer M, Kenins L, Wodnar-Filpowicz A, Quarto R, Martin I. Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells. 2005;23:1066.

    Article  Google Scholar 

  48. Giannoni P, Mastrogiacomo M, Alini M, Pearce SG, Corsi A, Santolini F, Muraglia A, Bianco P, Cancedda R. Regeneration of large bone defects in sheep using bone marrow stromal cells. J Tissue Eng Regen Med. 2008;2:253.

    Article  CAS  Google Scholar 

  49. Zreiqat H, Howlett CR. Titanium substrata composition influences osteoblastic phenotype: In vitro study. J Biomed Mater Res. 1999;47:360.

    Article  CAS  Google Scholar 

  50. Marom R, Shur I, Solomon R, Benayahu D. Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol. 2005;202:41.

    Article  CAS  Google Scholar 

  51. Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit Rev Oral Biol Med. 1999;10:79.

    Article  CAS  Google Scholar 

  52. Roca H, Phimphilai M, Gopalakrishnan R, Xiao G, Franceschi RT. Cooperative interactions between RUNX2 and homeodomain protein-binding sites are critical for the osteoblast-specific expression of the bone sialoprotein gene. J Biol Chem. 2005;280:30845.

    Article  CAS  Google Scholar 

  53. Carvalho RS, Bumann A, Schaffer JL, Gerstenfeld LC. Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation. J Cell Biochem. 2002;84:497.

    Article  CAS  Google Scholar 

  54. Lamour V, Detry C, Sanchez C, Henrotin Y, Castronovo V, Bellahcene A. Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J Biol Chem. 2007;282:36240.

    Article  CAS  Google Scholar 

  55. Behonick DJ, Xing Z, Lieu S, Buckley JM, Lotz JC, Marcucio RS, Werb Z, Miclau T, Colnot C. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS ONE. 2007;2:e1150.

    Article  Google Scholar 

  56. Park JW, Kim YJ, Jang JH. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Clin Oral Implants Res. 2010;21(4):398.

    Article  Google Scholar 

  57. Balloni S, Calvi EM, Damiani F, Bistoni G, Calvitti M, Locci P, Becchetti E, Marinucci L. Effects of titanium surface roughness on mesenchymal stem cell commitment and differentiation signaling. Int J Oral Maxillofac Implants. 2009;24(4):627.

    Google Scholar 

  58. Chung JW, Kim MS, Piao ZH, Jeong M, Yoon SR, Shin N, Kim SY, Hwang ES, Yang Y, Lee YH, Kim YS, Choi I. Osteopontin promotes the development of natural killer cells from hematopoietic stem cells. Stem Cells. 2008;26(8):2114.

    Article  CAS  Google Scholar 

  59. Pham QP, Kasper FK, Scott Baggett L, Raphael RM, Jansen JA, Mikos AG. The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells. Biomaterials. 2008;29(18):2729.

    Article  CAS  Google Scholar 

  60. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Gheron Robey P, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rosalbino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosalbino, F., Macciò, D., Giannoni, P. et al. Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys. J Mater Sci: Mater Med 22, 1293–1302 (2011). https://doi.org/10.1007/s10856-011-4301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4301-z

Keywords

Navigation