Skip to main content

Advertisement

Log in

Defragmentation of lysozyme derived Amyloid β fibril using Biocompatible Magnetic fluid

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We present here a modulating effect on lysozyme derived Amyloid β fibrils by aqueous magnetic fluid. This non-conventional approach of treatment of lysozyme derived Amyloid β fibrils showed lysing of Amyloid fibrils to its secondary structures which can be seen using optical microscope and scanning electron microscopic image. The size of lysozyme derived amyloid fibrils before and after treatment was measured using dynamic light scattering technique. The mechanism of defragmentation of lysozyme derived Amyloid β fibrils by magnetic fluid is explained. This is a first report to identify the secondary structure of protein using Fourier Transform Infrared (FTIR) and Circular Dichroism (CD) spectra after lysing. The cyto-toxicity study of this magnetic fluid on neuronal (SH-SY5Y) and non-neuronal (NRK) cell lines shows non-toxicity up to a concentration of 250 μg/mL. The study indicates a novel and unique complementary approach to treat the amyloidogenic brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650

    Article  CAS  Google Scholar 

  2. Yohan D, Chithrani BD. Applications of nanoparticles in nanomedicine. J Biomed nanotech. 2014;10:2371

    Article  CAS  Google Scholar 

  3. Kim BY, Rutka JT, Chan WC. Nanomedicine. New Engl J Med. 2010;363:2434

    Article  CAS  Google Scholar 

  4. El-Desouki RAKM. New insights on Alzheimer’s disease. J. Microscopy and Ultrastructure. 2014;2:57

    Article  Google Scholar 

  5. Kontush A, Berndt C, Weber W, Akopyan V, Arlt S, Schippling S. et al. Amyloid-β is anantioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med. 2001;30:119.1

    Article  CAS  Google Scholar 

  6. Reiman EM. Alzheimer's disease: Attack on amyloid-β protein. Nature. 2016;537:36

    Article  CAS  Google Scholar 

  7. Sadigh-Eteghad S, Talebi M, Farhoudi M, Golzari SEJ, Sabermarouf B, Mahmoudi J. β-Amyloidexhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. J Med Hypotheses Ideas. 2014;8:49

    Article  CAS  Google Scholar 

  8. Koneracká M, Antošová A, Závišová V, Lancz G, Gažová Z, Šipošová K. et al. Characterizationof Fe3O4 magnetic nanoparticles modified with dextran and investigation of their interaction with protein amyloid aggregates. Acta Phys Pol-Ser A General Phys. 2010;118:983

    Article  Google Scholar 

  9. Skaat H, Belfort G, Margel S. Synthesis and characterization of fluorinated magnetic core–shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology. 2009;20:225106

    Article  Google Scholar 

  10. Bellova A, Bystrenova E, Koneracka M, Kopcansky P, Valle F, Tomasovicova N. et al. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology. 2010;21:065103

    Article  Google Scholar 

  11. Koneracká M, Antošová A, Závišová V, Gažová Z, Lancz G, Juríková A. et al. Preparation and characterization of albumin containing magnetic fluid as potential drug for amyloid diseases treatment. Phys Proceedia. 2010;9:254

    Article  Google Scholar 

  12. Antosova A, Siposova K, Koneracka M, Zavisova V, Daxnerova Z, Vavra I. et al. Magnetic fluid—a novel approach to treat amyloid-related diseases. Phys Proceedia. 2010;9:262

    Article  CAS  Google Scholar 

  13. Skaat H, Chen R, Grinberg I, Margel S. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules. 2012;13:2662

    Article  CAS  Google Scholar 

  14. Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E. et al. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J Ame Chem Soc. 2008;130:15437

    Article  CAS  Google Scholar 

  15. Cabaleiro-Lago C, Lynch I, Dawson KA, Linse S. Inhibition of IAPP and IAPP (20− 29) fibrillation by polymeric nanoparticles. Langmuir. 2009;26:3453

    Article  Google Scholar 

  16. Shaw CP, Middleton DA, Volk M, Lévy R. Amyloid-derived peptide forms self-assembled monolayers on gold nanoparticle with a curvature-dependent β-sheet structure. ACS nano. 2012;6:1416

    Article  CAS  Google Scholar 

  17. Cabaleiro-Lago C, Szczepankiewicz O, Linse S. The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir. 2012;28:1852

    Article  CAS  Google Scholar 

  18. Wu WH, Sun X, Yu YP, Hu J, Zhao L, Liu Q. et al. TiO2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochem Biophys Res Comm. 2008;373:315

    Article  CAS  Google Scholar 

  19. Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E. et al. Proceedings of the National Academy of Sciences. Proc Natl Acad Sci.2007;104:8691

    Article  CAS  Google Scholar 

  20. Parikh N, Parekh K. Technique to optimize magnetic response of Gelatin coated magnetic nanoparticles. J Mater Sci Mater Med. 2015;26:7–1

    Article  Google Scholar 

  21. Nevskaya NA, Chirgadze YN. Infrared spectra and resonance interactions of amide-I and II vibration of alpha-helix. Biopolymers. 1976;15:637

    Article  CAS  Google Scholar 

  22. Martin SR, Bayley PM.Calcium-Bind Protein Protoc: Methods Tech. Springer Publications, 2002;2:43

  23. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1:2876

    Article  CAS  Google Scholar 

  24. Gopal R, Park JS, Seo CH, Park Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci. 2012;13:3229

    Article  CAS  Google Scholar 

  25. Gaihre B, Khil MS, Kim HY. In vitro anticancer activity of doxorubicin-loaded gelatin-coated magnetic iron oxide nanoparticles. J Microencapsul. 2011;28:286

    Article  CAS  Google Scholar 

  26. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109:256

    Article  CAS  Google Scholar 

  27. Ziv O, Avtalion RR, Margel S. Immunogenicity of bioactive magnetic nanoparticles: Natural and acquired antibodies. J Biomed Mater Res Part A. 2008;85:1011

    Article  Google Scholar 

  28. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K. et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci. 2010;107:7710

    Article  CAS  Google Scholar 

  29. Fei L, Perrett S. Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci. 2009;10:646

    Article  CAS  Google Scholar 

  30. Joachim E, Kim ID, Jin Y, Kim KK, Lee JK, Choi H. Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model. Drug Deliv Transl Res. 2014;395:4.5–6

    Google Scholar 

  31. Rocha S, Thünemann AF, do Carmo Pereira M, Coelho M, Möhwald H, Brezesinski G. Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem. 2008;137:35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank DST, Govt. of India for providing financial support to NP under technology development project no. 161-G and CHARUSAT for providing experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinnari H. Parekh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parikh, N.P., Parekh, K.H. Defragmentation of lysozyme derived Amyloid β fibril using Biocompatible Magnetic fluid. J Mater Sci: Mater Med 29, 171 (2018). https://doi.org/10.1007/s10856-018-6185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6185-7

Navigation