Skip to main content
Log in

Protein–nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein–DNA and protein–ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein–DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31P–13C polarization-transfer experiments followed by the recording of a 2D 13C–13C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abragam A (1961) The principles of nuclear magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Abragam A, Goldman M (1978) Principles of dynamic nuclear polarisation. Rep Prog Phys 41:395

    Article  ADS  Google Scholar 

  • Akbey Ü., Oschkinat H (2016) Structural biology applications of solid state MAS DNP NMR. J Magn Reson 269:213–224

    Article  ADS  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Bauer T et al (2017) Line-broadening in low-temperature solid-state NMR spectra of fibrils. J Biomol NMR 67:51–61

    Article  Google Scholar 

  • Bazin A, Cherrier MV, Gutsche I, Timmins J, Terradot L (2015) Structure and primase-mediated activation of a bacterial dodecameric replicative helicase. Nucleic Acids Res 43:8564–8576

    Article  Google Scholar 

  • Bertini I et al (2012) NMR properties of sedimented solutes. Phys Chem Chem Phys 14:439–447

    Article  Google Scholar 

  • Carlomagno T (2014) Present and future of NMR for RNA–protein complexes: a perspective of integrated structural biology. J Magn Reson 241:126–136

    Article  ADS  Google Scholar 

  • Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain F.H.T. (2011) Structure determination and dynamics of protein–RNA complexes by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 58:1–61

    Article  Google Scholar 

  • Esadze A et al (2016) Changes in conformational dynamics of basic side chains upon protein–DNA association. Nucleic Acids Res 44:6961–6970

    Article  Google Scholar 

  • Frigyes D, Alber F, Pongor S, Carloni P (2001) Arginine–phosphate salt bridges in protein–DNA complexes: a Car–Parrinello study. J Mol Struct (Thoechem) 574:39–45

    Article  Google Scholar 

  • Gardiennet C et al (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed 51:7855–7858

    Article  Google Scholar 

  • Itsathitphaisarn O, Wing RA., Eliason WK., Wang J, Steitz TA (2012) The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151:267–277

    Article  Google Scholar 

  • Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705

    Article  Google Scholar 

  • LeBowitz JH, McMacken R (1986) The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 261:4738–4748

    Google Scholar 

  • Morag O, Abramov G, Goldbourt A (2014) Complete chemical shift assignment of the ssDNA in the filamentous bacteriophage fd reports on its conformation and on its interface with the capsid shell. J Am Chem Soc 136:2292–2301

    Article  Google Scholar 

  • Ravera E et al (2013) Dynamic nuclear polarization of sedimented solutes. J Am Chem Soc 135:1641–1644

    Article  Google Scholar 

  • Ravera E et al (2014) DNP-enhanced MAS NMR of bovine serum albumin sediments and solutions. J Phys Chem B 118:2957–2965

    Article  Google Scholar 

  • Sauvée C et al (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed 52:10858–10861

    Article  Google Scholar 

  • Siemer AB, McDermott AE (2008) Solid-state NMR on a type III antifreeze protein in the presence of ice. J Am Chem Soc 130:17394–17399

    Article  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Article  Google Scholar 

  • Spies M (2012) DNA helicases and DNA motor proteins. Springer, New York

    Google Scholar 

  • Stevens T et al (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51:437–447

  • Takegoshi K, Nakamura S, Terao T (1999) 13C–13C polarization transfer by resonant interference recoupling under magic-angle spinning in solid-state NMR. Chem Phys Lett 307:295–302

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Ulrich EL et al (2008) BioMagResBank. Nucleic Acids Res 36:D402-D408

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    Google Scholar 

  • Wiegand T et al (2016) Monitoring ssDNA binding to the DnaB helicase from Helicobacter pylori by solid-state NMR spectroscopy. Angew Chem Int Ed 55:14164–14168

    Article  Google Scholar 

  • Wu H, Finger LD, Feigon J (2005) Structure determination of protein–RNA complexes by NMR. In: Methods in enzymology, vol 394. Academic Press, Cambridge, pp 525–545

    Google Scholar 

  • Yount RG, Babcock D, Ballantyne W, Ojala D (1971) Adenylyl imidiodiphosphate, an adenosine triphosphate analog containing a P–N–P linkage. BioChemistry 10:2484–2489

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (Grant Nos. 200020_159707 and 200020_146757), the French ANR (ANR-14-CE09-0024B) and the ETH Career SEED-69 16-1. We cordially acknowledge the support of Laura Piveteau during one DNP session and Simon Widler for help with the expression of the protein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christophe Copéret, Anja Böckmann or Beat H. Meier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 728 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiegand, T., Liao, WC., Ong, T.C. et al. Protein–nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR. J Biomol NMR 69, 157–164 (2017). https://doi.org/10.1007/s10858-017-0144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0144-3

Keywords

Navigation