Skip to main content
Log in

Variations of eddy kinetic energy in the South China Sea

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Fifteen years of merged altimetric data were used to acquire the seasonal to interanual variations of eddy kinetic energy (EKE) in the South China Sea (SCS). The results show that climatological mean EKE in the SCS ranges from 50 cm2/s2 to 1,400 cm2/s2, with high values in the regions southeast of Vietnam and southwest of Taiwan Island. The amplitude of the annual harmonic of the EKE is characterized by high values to the southeast of Vietnam where the maximum exceeds 800 cm2/s2. The EKE in the northern SCS reaches its maximum in August-February, while it peaks in September–December in the southern SCS. Besides the seasonal variation, the EKE also shows strong interannual variation, which has a negative (positive) anomaly in boreal winter during El Niño (La Niña) events. The interannual variation of local wind stress curl associated with El Niño-Southern Oscillation events may be the cause of the interannual variation of the EKE in the SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S. I. and B. Wang (2001): Mechanisms of locking of the El Niño and La Niña mature phases to boreal winter. J. Climate, 14, 2164–2176.

    Article  Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng and T. Yamagata (2007): El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    Article  Google Scholar 

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace and I. Bladé (1999): The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990–2009.

    Article  Google Scholar 

  • Chang, C.-W. J., H.-H. Hsu, C.-R. Wu and W.-J. Sheu (2008): Interannual mode of sea level in the South China Sea and the roles of El Niño and El Niño Modoki. Geophys. Res. Lett., 35, L03601, doi:10.1029/2007GL032562.

    Article  Google Scholar 

  • Cheng, X. H. and Y. Q. Qi (2007): Trends of sea level variations in the South China Sea from merged altimetry data. Glob. Planet. Change, 57, 371–382.

    Article  Google Scholar 

  • Cheng, X. H., Y. Q. Qi and W. Q. Wang (2005): Seasonal and interannual variabilities of mesoscale eddies in the South China Sea. J. Trop. Oceanogr., 24(4), 51–59 (in Chinese with English abstract).

    Google Scholar 

  • Chervin, R. M. and S. H. Schneider (1976): On determining the statistical significance of climate experiments with general circulation models. J. Atmos. Sci., 33, 405–412.

    Article  Google Scholar 

  • Dorandeu, J. and P. Y. Le Traon (1999): Effects of global mean pressure variations on sea level changes from TOPEX/POSEIDON. J. Atmos. Oceanic Technol., 16, 1279–1283.

    Article  Google Scholar 

  • Du, Y., S.-P. Xie, K. Hu and G. Huang (2009): Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. J. Climate, 22, 2023–2038.

    Article  Google Scholar 

  • Ducet, N., P. Y. Le Traon and G. Reverdin (2000): Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105(C8), 19,477–19,498.

    Article  Google Scholar 

  • Fang, G., H. Chen, Z. Wei, Y. Wang, X. Wang and C. Li (2006): Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J. Geophys. Res., 111, C11S16, doi:10.1029/2005JC003276.

    Article  Google Scholar 

  • He, Z. G., D. X. Wang and J. Y. Hu (2002): Features of eddy kinetic energy and variations of upper circulation in the South China Sea. Acta Oceanol. Sinica, 21(2), 305–314.

    Google Scholar 

  • Ho, C.-R., Q. Zheng, Y. S. Soong, N.-J. Kuo and J.-H. Hu (2000): Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J. Geophys. Res., 105(C6), 13,981–13,990.

    Article  Google Scholar 

  • Hu, J. Y., H. Kawamura, H. S. Hong and Y. Q. Qi (2000): A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J. Oceanogr., 56, 607–624.

    Article  Google Scholar 

  • Hwang, C. and S. A. Chen (2000): Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. J. Geophys. Res., 105(10), 23,943–23,965.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. Mo, C. Ropelewski, J. Wang, R. Jenne and D. Joseph (1996): The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Le Traon, P. Y. and G. Dibarboure (1999): Mesoscale mapping capabilities of multiple-satellite altimeter missions. J. Atmos. Oceanic Technol., 16, 1208–1223.

    Article  Google Scholar 

  • Le Traon, P. Y. and F. Ogor (1998): ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2 cm challenge. J. Geophys. Res., 103, 8045–8057.

    Article  Google Scholar 

  • Le Traon, P. Y., F. Nadal and N. Ducet (1998): An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522–534.

    Article  Google Scholar 

  • Li, L., W. Nowlin and J. Su (1998): Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. Part I, 45, 1469–1482.

    Article  Google Scholar 

  • Liu, Q. Y., H. J. Yang and Z. Y. Liu (2001): Seasonal features of the sverdrup circulation in the South China Sea. Prog. Nat. Sci., 11(3), 202–206.

    Google Scholar 

  • Liu, Q. Y., X. Jiang, S. P. Xie and W. T. Liu (2004): A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability. J. Geophys. Res., 109, C07012, doi:10.1029/2003JC002179.

    Article  Google Scholar 

  • Morton, B. and G. Blackmore (2001): South China Sea. Mar. Pollut. Bull., 42(12), 1236–1263.

    Article  Google Scholar 

  • Pascual, A., Y. Faugère, G. Larnicol and P. Y. Le Traon (2005): Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33, L02611, doi:10.1029/2005GL024633.

    Article  Google Scholar 

  • Pedlosky, J. (1987): Geophysical Fluid Dynamics. Springer, Berlin, 624 pp.

    Google Scholar 

  • Qu, T. (2000): Upper-layer circulation in the South China Sea. J. Phys. Oceanogr., 30, 1450–1460.

    Article  Google Scholar 

  • Qu, T., K. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida and T. Yamagata (2004): Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17, 3644–3657.

    Article  Google Scholar 

  • Shaw, P.-T. and S.-Y. Chao (1994): Surface circulation in the South China Sea. Deep-Sea Res. Part I, 41, 1663–1683

    Article  Google Scholar 

  • Stammer, D. and C. Wunsch (1999): Temporal changes in eddy energy of the oceans. Deep-Sea Res., 46, 77–108.

    Article  Google Scholar 

  • Stammer, D., C. Böning and C. Dieterich (2001): The role of variable wind forcing in generating eddy energy in the North Atlantic. Prog. Oceanogr., 48, 289–311.

    Article  Google Scholar 

  • Torrence, C. and G. P. Compo (1998): A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79(1), 61–78.

    Article  Google Scholar 

  • Trenberth, K. E. (1984): Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326–332.

    Article  Google Scholar 

  • Trenberth, K. E. and D. J. Shea (1987): On the evolution of the Southern Oscillation. Mon. Wea. Rev., 115, 3078–3096.

    Article  Google Scholar 

  • Wang, B., R. Wu and X. Fu (2000): Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.

    Article  Google Scholar 

  • Wang, D. X., Y. Liu, Y. Q. Qi and P. Shi (2001): Seasonal variability of thermal fronts in the northern South China Sea from satellite data. Geophys. Res. Lett., 28(20), 3963–3966.

    Article  Google Scholar 

  • Wang, G. H., J. L. Su and P. C. Chu (2003): Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30(21), 2121, doi:10.1029/2003GL018532.

    Article  Google Scholar 

  • Wang, G. H., D. K. Chen and J. L. Su (2006): Generation and life cycle of the dipole in the South China Sea summer circulation. J. Geophys. Res., 111, C06002, doi:10.1029/2005JC003314.

    Article  Google Scholar 

  • Wang, L. P., C. J. Koblinsky and S. Howden (2000): Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep-Sea Res. Part I, 47, 681–708.

    Article  Google Scholar 

  • Wang, Y., G. Fang, Z. Wei and H. Chen (2006): Interannual variation of the South China Sea circulation and its relation to El Niño, as seen from a variable grid global ocean model. J. Geophys. Res., 111, C11S14, doi:10.1029/2005JC003269.

    Article  Google Scholar 

  • Wu, C. R., P. T. Shaw and S. Chao (1999): Assimilating altimetry data into a South China Sea model. J. Geophys. Res., 104, 29,987–30,005.

    Google Scholar 

  • Wu, J. (1982): Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87(12), 9704–9706.

    Article  Google Scholar 

  • Xie, S. P., Q. Xie, D. X. Wang and W. T. Liu (2003): Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 108(C8), 3261, doi:10.1029/2003JC001867.

    Article  Google Scholar 

  • Xie, S. P., C. H. Chang, Q. Xie and D. Wang (2007): Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations. J. Geophys. Res., 112, C10008, doi:10.1029/2007JC004238.

    Article  Google Scholar 

  • Yuan, D., W. Han and D. Hu (2007): Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters. Geophys. Res. Lett., 34, L13610, doi:10.1029/2007GL029401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhua Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Qi, Y. Variations of eddy kinetic energy in the South China Sea. J Oceanogr 66, 85–94 (2010). https://doi.org/10.1007/s10872-010-0007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0007-y

Keywords

Navigation