Skip to main content
Log in

DFT Studies of Palladium Model Catalysts: Structure and Size Effects

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An important task for theory is the multi-scale modeling of catalytic properties of nanocrystallites with sizes ranging from clusters of few metal atoms to particles consisting of 103–104 atoms. To explore catalytic properties of nanosized metal catalysts, we developed an approach based on three-dimensional symmetric model clusters of 1–2 nm (~100 metal atoms) with fcc structure, terminated by low-index surfaces. With this modeling technique one is able to describe at an accurate DFT level various catalytic and adsorption properties of metal nanoparticles in quantitative agreement with experimental studies of model catalysts deposited on thin oxide films. Metal nanocrystallites exhibit properties that can significantly vary with their size and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, vol. 4 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008).

    Google Scholar 

  2. A. T. Bell (2003). Science 299, 1688.

    Article  CAS  Google Scholar 

  3. C. R. Henry (1998). Surf. Sci. Rep. 31, 231.

    Article  CAS  Google Scholar 

  4. C. T. Campbell (1997). Surf. Sci. Rep. 27, 1.

    Article  CAS  Google Scholar 

  5. M. Bäumer and H.-J. Freund (1999). Progr. Surf. Sci. 61, 127.

    Article  Google Scholar 

  6. H. J. Freund (2010). Chem. Eur. J. 16, 9384.

    Article  CAS  Google Scholar 

  7. N. Nilius, T. Risse, S. Schauermann, S. Shaikhutdinov, M. Sterrer, and H. J. Freund (2011). Top. Catal. 54, 4.

    Article  CAS  Google Scholar 

  8. C. J. Cramer and D. G. Truhlar (2009). Phys. Chem. Chem. Phys. 11, 10757.

    Article  CAS  Google Scholar 

  9. I. V. Yudanov, R. Sahnoun, K. M. Neyman, and N. Rösch (2002). J. Chem. Phys. 117, 9887.

    Article  CAS  Google Scholar 

  10. I. V. Yudanov, R. Sahnoun, K. M. Neyman, N. Rösch, J. Hoffmann, S. Schauermann, V. Johánek, H. Unterhalt, G. Rupprechter, J. Libuda, and H.-J. Freund (2003). J. Phys. Chem. B 107, 255.

    Article  CAS  Google Scholar 

  11. I. V. Yudanov, M. Metzner, A. Genest, and N. Rösch (2008). J. Phys. Chem. C 112, 20269.

    Article  CAS  Google Scholar 

  12. J.-H. Fischer-Wolfarth, J. A. Farmer, J. M. Flores-Camacho, A. Genest, I. V. Yudanov, N. Rösch, C. T. Campbell, S. Schauermann, and H.-J. Freund (2010). Phys. Rev. B 81, 241416.

    Article  Google Scholar 

  13. P. Nava, M. Sierka, and R. Ahlrichs (2003). Phys. Chem. Chem. Phys. 5, 3372.

    Article  CAS  Google Scholar 

  14. V. Kumar and Y. Kawazoe (2002). Phys. Rev. B 66, 144413.

    Article  Google Scholar 

  15. F. Baletto and R. Ferrando (2005). Rev. Mod. Phys. 77, 371.

    Article  CAS  Google Scholar 

  16. H.-J. Freund and G. Pacchioni (2008). Chem. Soc. Rev. 37, 2224.

    Article  CAS  Google Scholar 

  17. T. Dellwig, G. Rupprechter, H. Unterhalt, and H.-J. Freund (2000). Phys. Rev. Lett. 85, 776.

    Article  CAS  Google Scholar 

  18. T. Schalow, B. Brandt, D. E. Starr, M. Laurin, S. K. Shaikhutdinov, S. Schauermann, J. Libuda, and H.-J. Freund (2007). Phys. Chem. Chem. Phys. 9, 1347.

    Article  CAS  Google Scholar 

  19. O. M. Poltorak and V. S. Boronin (1966). Russ. J. Phys. Chem. 40, 1436.

    Google Scholar 

  20. R. van Hardeveld and F. Hartog (1969). Surf. Sci. 15, 189.

    Article  Google Scholar 

  21. G. Pacchioni, S.-C. Chung, S. Krüger, and N. Rösch (1994). Chem. Phys. 184, 125.

    Article  CAS  Google Scholar 

  22. O. Häberlen, S.-C. Chung, M. Stener, and N. Rösch (1997). J. Chem. Phys. 106, 5189.

    Article  Google Scholar 

  23. S. Krüger, S. Vent, and N. Rösch (1997). Ber. Bunsenges. Phys. Chem. 101, 1640.

    Google Scholar 

  24. S. Krüger, S. Vent, F. Nörtemann, M. Staufer, and N. Rösch (2001). J. Chem. Phys. 115, 2082.

    Article  Google Scholar 

  25. H. Zhang, D. Tian, and J. Zhao (2008). J. Chem. Phys. 129, 114302.

    Article  Google Scholar 

  26. Y. J. Xiong and Y. N. Xia (2007). Adv. Mater. 19, 3385.

    Article  CAS  Google Scholar 

  27. Y. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak (2009). Angew. Chem. Int. Ed. 48, 60.

    Article  CAS  Google Scholar 

  28. T. Belling, T. Grauschopf, S. Krüger, M. Mayer, F. Nörtemann, M. Staufer, C. Zenger, and N. Rösch, in H.-J. Bungartz, F. Durst, and C. Zenger (eds.), High Performance Scientific and Engineering Computing, Lecture Notes in Computational Science and Engineering, vol. 8 (Springer, Heidelberg, 1999), pp. 441–455.

  29. T. Belling, T. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V. A. Nasluzov, U. Birkenheuer, A. Hu, A. V. Matveev, A. M. Shor, M. S. K. Fuchs-Rohr, K. M. Neyman, D. I. Ganyushin, T. Kerdcharoen, A. Woiterski, A. B. Gordienko, S. Majumder, and N. Rösch ParaGauss, Version 3.1 (Technische Universität München, Munich, 2008).

    Google Scholar 

  30. N. Rösch, A. V. Matveev, V. A. Nasluzov, K. M. Neyman, L. V, Moskaleva, and S. Krüger, in P. Schwerdtfeger (ed.), Relativistic Electronic Structure TheoryApplications, Theoretical and Computational Chemistry Series, vol. 14 (Elsevier, Amsterdam, 2004), pp. 656–722.

  31. A. S. Barnard and L. A. Curtiss (2006). ChemPhysChem 7, 1544.

    Article  CAS  Google Scholar 

  32. F. Viñes, F. Illas, and K. M. Neyman (2008). J. Phys. Chem. 112, 8911.

    Article  Google Scholar 

  33. A. Roldán, F. Viñes, F. Illas, J. M. Ricart, and K. M. Neyman (2008). Theor. Chem. Acc. 120, 565.

    Article  Google Scholar 

  34. G. Pacchioni, P. S. Bagus, and F. Parmigiani (eds.), Cluster Models for Surface and Bulk Phenomena, NATO ASI Series B, vol. 283 (Plenum, New York, 1992).

  35. J. L. Whitten and H. Yang (1996). Surf. Sci. Rep. 24, 59.

    Article  Google Scholar 

  36. N. Rösch and G. Pacchioni, in G. Schmid (ed.), Clusters and Colloids-From Theory to Applications (Verlag Chemie, Weinheim, 1994), pp. 5–88.

  37. J. S. Vermaak, C. W. Mays, and D. Kuhlmann-Wilsdorf (1968). Surf. Sci. 12, 128.

    Article  CAS  Google Scholar 

  38. C. W. Mays, J. S. Vermaak, and D. Kuhlmann-Wilsdorf (1968). Surf. Sci. 12, 134.

    Article  CAS  Google Scholar 

  39. C. R. Berry (1952). Phys. Rev. 88, 596.

    Article  CAS  Google Scholar 

  40. S. A. Nepijko, M. Klimenkov, M. Adelt, H. Kuhlenbeck, R. Schlögl, and H.-J. Freund (1999). Langmuir 15, 5309.

    Article  CAS  Google Scholar 

  41. R. Lamber, S. Wetjen, and N. I. Jaeger (1995). Phys. Rev. B 51, 10986.

    Article  Google Scholar 

  42. D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, 77th ed (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  43. G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen, S. Lebegue, J. Paier, O. A. Vydrov, and J. G. Angyan (2009). Phys. Rev. B 79, 155107.

    Article  Google Scholar 

  44. H. Unterhalt, G. Rupprechter, and H.-J. Freund (2002). J. Phys. Chem. B 106, 356.

    Article  CAS  Google Scholar 

  45. G. Rupprechter, H. Unterhalt, M. Morkel, P. Galletto, L. Hu, and H.-J. Freund (2002). Surf. Sci. 502–503, 109.

    Article  Google Scholar 

  46. M. Mavrikakis, B. Hammer, and J. K. Nørskov (1998). Phys. Rev. Lett. 81, 2819.

    Article  Google Scholar 

  47. I. V. Yudanov, K. M. Neyman, and N. Rösch (2006). Phys. Chem. Chem. Phys. 8, 2396.

    Article  CAS  Google Scholar 

  48. I. V. Yudanov, A. V. Matveev, K. M. Neyman, and N. Rösch (2008). J. Am. Chem. Soc. 130, 9342.

    Article  CAS  Google Scholar 

  49. J. D. Holladay, Y. Wang, and E. Jones (2004). Chem. Rev. 104, 4767.

    Article  CAS  Google Scholar 

  50. Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, and M. Haruta (1998). Appl. Catal. A 171, 123.

    Article  CAS  Google Scholar 

  51. R. Shiozaki, T. Hayakawa, Y. Y. Liu, T. Ishii, M. Kumagai, S. Hamakawa, K. Suzuki, T. Itoh, T. Shishido, and K. Takehira (1999). Catal. Lett. 58, 131.

    Article  CAS  Google Scholar 

  52. S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda, and H.-J. Freund (2002). Angew. Chem. Int. Ed. 41, 2532.

    Article  CAS  Google Scholar 

  53. M. Morkel, V. V. Kaichev, G. Rupprechter, H.-J. Freund, I. P. Prosvirin, and V. I. Bukhtiyarov (2004). J. Phys. Chem. B 108, 12955.

    Article  CAS  Google Scholar 

  54. M. Borasio, O. Rodríguez de la Fuente, G. Rupprechter, and H.-J. Freund (2005). J. Phys. Chem. B 109, 17791.

    Article  CAS  Google Scholar 

  55. O. Rodríguez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter, and H.-J. Freund (2004). Surf. Sci. 566–568, 740.

    Article  Google Scholar 

  56. R. A. van Santen (2009). Acc. Chem. Res. 42, 57.

    Article  Google Scholar 

  57. F. Viñes, A. Desikusumastuti, T. Staudt, A. Görling, J. Libuda, and K. M. Neyman (2008). J. Phys. Chem. C 112, 16539.

    Article  Google Scholar 

  58. F. Viñes, K. M. Neyman, and A. Görling (2009). J. Phys. Chem. A 113, 11963.

    Article  Google Scholar 

  59. F. Viñes, Y. Lykhach, T. Staudt, M. P. A. Lorenz, C. Papp, H. P. Steinrück, J. Libuda, K. M. Neyman, and A. Görling (2010). Chem. Eur. J. 16, 6530.

    Google Scholar 

  60. K. M. Neyman, R. Sahnoun, C. Inntam, S. Hengrasmee, and N. Rösch (2004). J. Phys. Chem. B 108, 5424.

    Article  CAS  Google Scholar 

  61. D. W. Yuan, X. G. Gong, and R. Q. Wu (2008). Phys. Rev. B 78, 035441.

    Article  Google Scholar 

  62. L. O. Paz-Borbón, R. L. Johnston, G. Barcaro, and A. Fortunelli (2008). J. Chem. Phys. 128, 134517.

    Article  Google Scholar 

  63. F. Pittaway, L. O. Paz-Borbón, R. L. Johnston, H. Arslan, R. Ferrando, C. Mottet, G. Barcaro, and A. Fortunelli (2009). J. Phys. Chem. C 113, 9141.

    Article  CAS  Google Scholar 

  64. H. Y. Kim, H. G. Kim, D. H. Kim, and H. M. Lee (2008). J. Phys. Chem. C 112, 17138.

    Article  CAS  Google Scholar 

  65. I. V. Yudanov and K. M. Neyman (2010). Phys. Chem. Chem. Phys. 12, 5094.

    Article  CAS  Google Scholar 

  66. F. R. Negreiros, Z. Kuntova, G. Barcaro, G. Rossi, R. Ferrando, and A. Fortunelli (2010). J. Chem. Phys. 132, 234703.

    Article  Google Scholar 

  67. Y. F. Han, D. Kumar, C. Sivadinarayana, A. Clearfield, and D. W. Goodman (2004). Catal. Lett. 94, 131.

    Article  CAS  Google Scholar 

  68. D. Teschner, E. Vass, M. Hävecker, S. Zafeiratos, P. Schnörch, H. Sauer, A. Knop-Gericke, R. Schlögl, M. Chamam, A. Wootsch, A. S. Canning, J. J. Gamman, S. D. Jackson, J. McGregor, and L. F. Gladden (2006). J. Catal. 242, 26.

    Article  CAS  Google Scholar 

  69. D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A. Knop-Gericke, S. D. Jackson, and R. Schlögl (2008). Science 320, 86.

    Article  CAS  Google Scholar 

  70. M. Wilde, K. Fukutani, W. Ludwig, B. Brandt, J. H. Fischer, S. Schauermann, and H.-J. Freund (2008). Angew. Chem. Int. Ed. 47, 9289.

    Article  CAS  Google Scholar 

  71. D. Teschner, Z. Révay, J. Borsodi, M. Hävecker, A. Knop-Gericke, R. Schlögl, D. Milroy, S. D. Jackson, D. Torres, and P. Sautet (2008). Angew. Chem. Int. Ed. 47, 9274.

    Article  CAS  Google Scholar 

  72. I. V. Yudanov, K. M. Neyman, and N. Rösch (2004). Phys. Chem. Chem. Phys. 6, 116.

    Article  CAS  Google Scholar 

  73. K. M. Neyman, C. Inntam, A. B. Gordienko, I. V. Yudanov, and N. Rösch (2005). J. Chem. Phys. 122, 174705.

    Article  Google Scholar 

  74. F. Viñes, C. Loschen, F. Illas, and K. M. Neyman (2009). J. Catal. 266, 59.

    Article  Google Scholar 

  75. S. M. Kozlov, I. V. Yudanov, H. A. Aleksandrov, and N. Rösch (2009). Phys. Chem. Chem. Phys. 11, 10955.

    Article  CAS  Google Scholar 

  76. K. M. Neyman and S. Schauermann (2010). Angew. Chem. Int. Ed. 49, 4743.

    CAS  Google Scholar 

  77. D. Y. Murzin (2009). Chem. Eng. Sci. 64, 1046.

    Article  CAS  Google Scholar 

  78. V. N. Parmon (2007). Dokl. Phys. Chem. 413, 42.

    Article  CAS  Google Scholar 

  79. U. Landman, B. Yoon, C. Zhang, U. Heiz, and M. Arenz (2007). Top. Catal. 44, 145.

    Article  CAS  Google Scholar 

  80. W. E. Kaden, T. Wu, W. A. Kunkel, and S. L. Anderson (2009). Science 326, 826.

    Article  CAS  Google Scholar 

  81. W. E. Kaden, W. A. Kunkel, M. D. Kane, F. S. Roberts, and S. L. Anderson (2010). J. Am. Chem. Soc. 132, 13097.

    Article  CAS  Google Scholar 

  82. S. Lee, B. Lee, F. Mehmood, S. Seifert, J. A. Libera, J. W. Elam, J. Greeley, P. Zapol, L. A. Curtiss, M. J. Pellin, P. C. Stair, R. E. Winans, and S. Vajda (2010). J. Phys. Chem. C 114, 10342.

    Article  CAS  Google Scholar 

  83. S. Kunz, F. F. Schweinberger, V. Habibpour, M. Röttgen, C. Harding, M. Arenz, and U. Heiz (2010). J. Phys. Chem. C 114, 1651.

    Article  CAS  Google Scholar 

  84. U. Heiz, A. Sanchez, S. Abbet, and W.-D. Schneider (1999). J. Am. Chem. Soc. 121, 3214.

    Article  CAS  Google Scholar 

  85. U. Heiz and U. Landman (eds.), Nanocatalysis: Nanoscience and Technology (Springer, Berlin, 2006).

Download references

Acknowledgments

This work was supported in part by Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, the Russian Foundation for Basic Research, and the Siberian Branch of the Russian Academy of Sciences. We also acknowledge a generous allotment of computer time at Leibniz-Rechenzentrum München.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilya V. Yudanov or Notker Rösch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudanov, I.V., Genest, A. & Rösch, N. DFT Studies of Palladium Model Catalysts: Structure and Size Effects. J Clust Sci 22, 433–448 (2011). https://doi.org/10.1007/s10876-011-0392-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0392-4

Keywords

Navigation