Skip to main content

Advertisement

Log in

Zno Nanorods/Nanoparticles: Novel Hydrothermal Synthesis, Characterization and Formation Mechanism for Increasing the Efficiency of Dye-Sensitized Solar Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods were successfully synthesized via a novel hydrothermal route using new set of starting reagents including Zn(OAc)2·2H2O, ethylenediamine and hydrazine. The as-synthesized products were characterized by techniques including X-ray diffraction, energy dispersive spectrometry, Scanning electron microscopy, fourier transform infrared spectra and diffused reflectance UV–Vis spectrum and a possible growth mechanism of the ZnO nanorods was proposed. As-obtained products were utilized as photo-anode electrode in dye-sensitized solar cells and ZnO nanostructures were deposited on FTO via electrophoresis-based method. Moreover, effect of ethylenediamine and hydrazine on morphology and consequently, on solar cells efficiency was evaluated. The results showed that particle size and morphology have salient effect on solar cells efficiency and rod-like nanostructures of ZnO with smaller length and diameter have higher efficiency compared to spherical ZnO nanostructures. In addition, depositing of ZnO nanorods on ZnO nanoparticles led to obtaining 3.85 % cell efficiency that in comparison with sole nanorods (2.81 %) and sole nanoparticles (2.07 %), efficiency improvements of 37 and 86 % were respectively achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Hongsith, N. Hongsith, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, P. Singjai, and S. Choopun (2013). Thin Solid Films 539, 260.

    Article  CAS  Google Scholar 

  2. B. E. Hardin, H. J. Snaith, and M. D. McGehee (2012). Nat. Photon 6, 162.

    Article  CAS  Google Scholar 

  3. S. F. Zhang, X. D. Yang, Y. Numata, and L. Y. Han (2013). Energy Environ. Sci. 6, 1443.

    Article  Google Scholar 

  4. B. O’Regan and M. Gratzel (1991). Nature 353, 737.

    Article  Google Scholar 

  5. Q. F. Zhang, K. Park, J. T. Xi, D. Myers, and G. Z. Cao (2011). Adv. Energy Mater. 1, 988.

    Article  CAS  Google Scholar 

  6. T. Kawano and H. Imai (2006). Cryst. Growth Des. 6, 1054.

    Article  CAS  Google Scholar 

  7. J. Tamaki (2005). Sens. Lett. 3, 89.

    Article  CAS  Google Scholar 

  8. M. Kurtz, J. Strunk, O. Hinrichsen, M. Muhler, K. Fink, B. Meyer, and C. Woll (2005). Angew. Chem. Int. Ed. 44, 2790.

    Article  CAS  Google Scholar 

  9. C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. Shen (2001). J. Appl. Phys. 90, 4489.

    Article  CAS  Google Scholar 

  10. M. Izaki, K. T. Mizuno, T. Shinagawa, M. Inaba, and A. Tasaka (2006). J. Electrochem. Soc. 153, C668.

    Article  CAS  Google Scholar 

  11. S. H. Lee, S. S. Lee, J. J. Choi, J. U. Jeon, and K. Ro (2005). Microsyst. Technol. 11, 416.

    Article  CAS  Google Scholar 

  12. L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt (2001). J. Phys. Chem. B 105, 3350.

    Article  CAS  Google Scholar 

  13. S. Sutthana, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, P. Ruankham, and S. Choopun (2015). Energy Procedia 79, 1021.

    Article  CAS  Google Scholar 

  14. K. J. Hartlieb, C. L. Raston, and M. Saunders (2007). Chem. Mater. 19, 5453.

    Article  CAS  Google Scholar 

  15. Y. L. Wang, M. Guo, M. Zhang, et al. (2010). Cryst. Eng. Comm. 12, 4024.

    Article  CAS  Google Scholar 

  16. Q. Li, Y. Chen, L. Luo, L. Wang, Y. Yu, and L. Zhai (2013). J. Alloys Compd. 560, 156.

    Article  CAS  Google Scholar 

  17. S. Muthukumar, C. R. Gorla, N. W. Emanetoglu, S. Liang, and Y. Lu (2001). J. Cryst. Growth 225, 197.

    Article  CAS  Google Scholar 

  18. Y. Zhang, R. E. Russo, and S. S. Mao (2005). Appl. Phys. Lett. 87, 043106.

    Article  Google Scholar 

  19. F. Soofivand, M. Salavati-Niasari, and F. Mohandes (2013). Mater. Lett. 98, 55.

    Article  CAS  Google Scholar 

  20. J. Yang, J. Zheng, H. Zhai, X. Yang, L. Yang, Y. Liu, J. Lang, and M. Gao (2010). J. Alloys Compd. 489, 722.

    Article  Google Scholar 

  21. F. Yang, W. H. Liu, X. W. Wang, J. Zheng, R. Y. Shi, H. Zhao, and H. Q. Yang (2012). ACS Appl. Mater. Interfaces 4, 3852.

    Article  CAS  Google Scholar 

  22. A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng (2012). J. Mater. Chem. 22, 6526.

    Article  CAS  Google Scholar 

  23. J. Rodríguez, G. Feuillet, F. Donatini, D. Onna, L. Sanchez, R. Candal, M. C. Marchi, S. A. Bilmes, and F. Chandezon (2015). Mater. Chem. Phys. 151, 378.

    Article  Google Scholar 

  24. Z. Zhang, Y. Lv, J. Yan, D. Hui, J. Yun, C. Zhai, and W. Zhao (2015). J. Alloys Compd. 650, 374.

    Article  CAS  Google Scholar 

  25. Z. Zarghami, M. Ramezani, and M. Maddahfar (2015). Mater. Lett. 152, 21.

    Article  CAS  Google Scholar 

  26. M. Mousavi-Kamazani and M. Salavati-Niasari (2014). Compos. Part B Eng. 56, 490.

    Article  CAS  Google Scholar 

  27. S. Liu, Y. Cai, X. Cai, H. Li, F. Zhang, Q. Mu, Y. Liu, and Y. Wang (2013). Appl. Catal. A Gen. 453, 45.

    Article  CAS  Google Scholar 

  28. Q. Mu and Y. Wang (2011). J. Alloys Compd. 509, 2060.

    Article  CAS  Google Scholar 

  29. F. Mohandes and M. Salavati-Niasari (2013). Ultrason. Sonochem. 20, 354.

    Article  CAS  Google Scholar 

  30. N. Salehifar, Z. Zarghami, and M. Ramezani (2016). Mater. Lett. 167, 226.

    Article  CAS  Google Scholar 

  31. Z. Zarghami, M. Maddahfar, and M. Ramezani (2015). J. Mater. Sci. Mater. Electron. 26, 6339.

    Article  CAS  Google Scholar 

  32. J. Fang, H. Fan, H. Tian, and G. Dong (2015). Mater. Charact. 108, 51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chemistry Research Center at Islamic Azad University, Arak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zabihullah Zarghami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarghami, Z., Ramezani, M. & Motevalli, K. Zno Nanorods/Nanoparticles: Novel Hydrothermal Synthesis, Characterization and Formation Mechanism for Increasing the Efficiency of Dye-Sensitized Solar Cells. J Clust Sci 27, 1451–1462 (2016). https://doi.org/10.1007/s10876-016-1011-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1011-1

Keywords

Navigation