Skip to main content
Log in

Microwave Assisted Synthesis of Pure and Ag Doped SnO2 Quantum Dots as Novel Platform for High Photocatalytic Activity Performance

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, we report a simple and fast synthetic route to prepare pure and Ag doped SnO2 quantum dots via one step microwave irradiation method for the first time. Variety of analytical techniques including XRD, Raman, TEM, EDS, XPS, UV and PL were used to investigate the influence of Ag dopant concentration on structural, morphological, compositional and optical properties of SnO2 nanoparticles. The XRD pattern showed a dominant tetragonal rutile structure of both pure and Ag doped SnO2 and formed directly during the microwave irradiation process. TEM images revealed that quantum dots and the average particle size increases by Ag doping. The EDS and XPS results proved that the presence of silver as Ag3+ species. The optical properly of SnO2 was significantly improved and narrowing the band gap (3.54–3.09 eV) of pure SnO2 by Ag doping, which is confirmed through UV and PL results. The photocatalytic behavior of the catalyst powders were investigated using methylene blue and rhodamine B (RhB) as model organic pollutants. A maximum RhB degradation efficiency of 97.5% is achieved under visible light irradiation for Ag doped SnO2 catalyst. Furthermore, the Ag–SnO2 QDs catalyst demonstrates good reusability and stability after the seven cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. M. Al-Hamdi, M. Sillanpää, and J. Dutta (2015). J. Rare Earths 33, 1275.

    Article  CAS  Google Scholar 

  2. M. N. Chong, B. Jin, C. W. Chow, and C. Saint (2010). Water Res. 44, 2997.

    Article  CAS  PubMed  Google Scholar 

  3. D. H. Bremner, R. Molina, F. Martınez, J. A. Melero, and Y. Segura (2009). Appl. Catal. B 90, 380.

    Article  CAS  Google Scholar 

  4. J. Yang, X. Zhang, C. Wang, P. Sun, L. Wang, B. Xia, and Y. Liu (2012). Solid State Sci. 14, 139.

    Article  CAS  Google Scholar 

  5. C. Karunakaran, V. Rajeswari, and P. Gomathisankar (2011). Solid State Sci. 13, 923.

    Article  CAS  Google Scholar 

  6. M. Qamar, Z. H. Yamani, M. A. Gondal, and K. Alhooshani (2011). Solid State Sci. 13, 1748.

    Article  CAS  Google Scholar 

  7. A. Qurashi, Z. Zhong, and M. W. Alam (2010). Solid State Sci. 12, 1516.

    Article  CAS  Google Scholar 

  8. E. J. Li, K. Xia, S. F. Yin, W. L. Dai, S. L. Luo, and C. T. Au (2011). Mater. Chem. Phys. 125, 236.

    Article  CAS  Google Scholar 

  9. Z. J. Yang, L. L. Lv, Y. L. Dai, Z. H. Xv, and D. Qian (2010). Appl. Surf. Sci. 256, 2898.

    Article  CAS  Google Scholar 

  10. H. J. Snaith and C. Ducati (2010). Nano Lett. 10, 1259.

    Article  CAS  PubMed  Google Scholar 

  11. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, and J. Jiang (2009). J. Am. Chem. Soc. 132, 46.

    Article  CAS  Google Scholar 

  12. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730.

    Article  CAS  Google Scholar 

  13. M. Parthibavarman, V. Hariharan, C. Sekar, and V. N. Singh (2010). J. Optoelectron. Adv. Mater. 12, 1894.

    CAS  Google Scholar 

  14. F. P. Wang, X. T. Zhou, J. G. Zhou, T. K. Sham, and Z. F. Ding (2007). J. Phys. Chem. C 111, 18839.

    Article  CAS  Google Scholar 

  15. Md T Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M. M. Müller, H.-J. Kleebe, J. Ziegler, and W. Jaegermann (2012). Inorg. Chem. 51, 7764.

    Article  CAS  PubMed  Google Scholar 

  16. V. Kumar, V. Kumar, S. Som, J. H. Neethling, M. Lee, O. M. Ntwaeaborwa, and H. C. Swart (2014). Nanotechnology 25, 135701–135709.

    Article  CAS  PubMed  Google Scholar 

  17. M. Parthibavarman, B. Renganathan, and D. Sastikumar (2013). Curr. Appl. Phys. 13, 1537.

    Article  Google Scholar 

  18. V. Hariharan, R. Radhakrishnan, M. Parthibavarman, R. Dhilipkumar, and C. Sekar (2011). Talanta 85, 2166.

    Article  CAS  PubMed  Google Scholar 

  19. A. Bouaine and N. Brihi (2009). J. Phys. Chem. C 111, 2924.

    Article  CAS  Google Scholar 

  20. C. V. Reddy, B. Babu, S. V. Prabhakar Vattikuti, R. V. S. S. N. Ravikumar, and J. Shim (2016). J. Lumin. 179, 26.

    Article  CAS  Google Scholar 

  21. L. M. Fang, X. T. Zu, Z. J. Li, S. Zhu, C. M. Liu, L. M. Wang, and F. Gao (2008). J. Mater. Sci. Mater. Electron. 19, 868.

    Article  CAS  Google Scholar 

  22. J. X. Zhou, M. S. Zhang, J. M. Hong, and Z. Yin (2006). Solid State Commun. 138, 242.

    Article  CAS  Google Scholar 

  23. Y. Z. Li, H. Zhang, Z. M. Guo, J. J. Han, X. J. Zhao, Q. N. Zhao, and S. J. Kim (2008). Langmuir 24, 8351.

    Article  CAS  PubMed  Google Scholar 

  24. J. P. Huo, L. T. Fang, Y. L. Lei, G. C. Zeng, and H. P. Zeng (2014). J. Mater. Chem. A 2, 11040.

    Article  CAS  Google Scholar 

  25. Yu-Yang Bai, Lu Yi, and Jin-Ku Liu (2016). J. Hazard. Mater. 307, 26.

    Article  CAS  PubMed  Google Scholar 

  26. S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe (1988). Jpn. J. Appl. Phys. 27, 1798.

    Article  CAS  Google Scholar 

  27. X. Cao, L. Cao, W. Yao, and X. Ye (1996). Surf. Interface Anal. 24, 662.

    Article  CAS  Google Scholar 

  28. S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee, and M. H. Cho (2014). New J. Chem. 38, 2462.

    Article  CAS  Google Scholar 

  29. M. Arami, N. Y. Limaee, N. M. Mahmoodi, and N. Salman (2006). J. Hazard. Mater. 135, 171.

    Article  CAS  PubMed  Google Scholar 

  30. I. Konstantinou and T. Albanis (2004). Appl. Catal. B 49, 1.

    Article  CAS  Google Scholar 

  31. S. Wu, H. Cao, S. Yin, X. Liu, and X. Zhang (2009). J. Phys. Chem. C 113, 17893.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parthibavarman.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthibavarman, M., Sathishkumar, S., Jayashree, M. et al. Microwave Assisted Synthesis of Pure and Ag Doped SnO2 Quantum Dots as Novel Platform for High Photocatalytic Activity Performance. J Clust Sci 30, 351–363 (2019). https://doi.org/10.1007/s10876-018-01493-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-01493-5

Keywords

Navigation