Skip to main content
Log in

Protected by Fumigants: Beetle Perfumes in Antimicrobial Defense

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Beetles share with other eukaryotes an innate immune system that mediates endogenous defense against pathogens. In addition, larvae of some taxa produce fluid exocrine secretions that contain antimicrobial compounds. In this paper, we provide evidence that larvae of the brassy willow leaf beetle Phratora vitellinae constitutively release volatile glandular secretions that combat pathogens in their microenvironment. We identified salicylaldehyde as the major component of their enveloping perfume cloud, which is emitted by furrow-shaped openings of larval glandular reservoirs and which inhibits in vitro the growth of the bacterial entomopathogen Bacillus thuringiensis. The suggested role of salicylaldehyde as a fumigant in exogenous antimicrobial defense was confirmed in vivo by its removal from glandular reservoirs. This resulted in an enhanced susceptibility of the larvae to infection with the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae. Consequently, we established the hypothesis that antimicrobial defense in beetles can be expanded beyond innate immunity to include external disinfection of their microenvironment, and we report for the first time the contribution of fumigants to antimicrobial defense in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altincicek B., Knorr E., and Vilcinskas A. 2007. Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum. Dev. Comp. Immunol., DOI 10.1016/j.dci.2007.09.005.

  • Bärlocher, F. 1999. Biostatistik. Thieme Publ., Stuttgart, Germany.

    Google Scholar 

  • Blum, M. S., Brand, J. M., Wallace, J. B., and Fales, H. M. 1972. Chemical characterisation of the defensive secretion of a chrysomelid larva. Life Sci. 11:525–531.

    Article  CAS  Google Scholar 

  • Clarkson, J. M., and Charnley, A. K. 1996. New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 4:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Dettner, K. 1985. Ecological and phylogenetic significance of defensive compounds from pygidial glands of Hydradephaga (Coleoptera). Proc. Acad. Nat. Sci. Philadelphia 137:156–171.

    Google Scholar 

  • Dettner, K., Fettköther, R., Ansteeg, O., Deml, R., Liepert, C., Petersen, B., Haslinger, E., and Francke, W. 1992. Insecticidal fumigants from defensive glands of insects—a fumigant test with adults of Drosophila melanogaster. J. Appl. Entomol. 113:128–137.

    Article  Google Scholar 

  • Freitak, D., Wheat, C. W., Heckel, D. G., and Vogel, H. 2007. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biology, DOI 10.1186/1741-7007-5-56.

  • Garb, G. 1915. The eversible glands of a chrysomelid larva, Melasoma lapponica. J. Entomol. Zool. 7:87–97.

    Google Scholar 

  • Gillespie, J. P., Bailey, A. M., Cobb, B., and Vilcinskas, A. 2000. Fungi as elicitors of insect immune responses. Arch. Insect Biochem. Physiol. 44:49–68.

    Article  PubMed  CAS  Google Scholar 

  • Grégoire, J.-C. 1988. Larval gregariousness in the Chrysomelidae, pp. 253–260, in P. H., Jolivet, E., Petitpierre, T. H., and Hsiao (eds.). Biology of ChrysomelidaeKluwer Academic Publisher, Dordrecht, The Netherlands.

    Google Scholar 

  • Gross, J., and Hilker, M. 1995. Chemoecological studies of the exocrine glandular larval secretions of two chrysomelid species (Coleoptera): Phaedon cochleariae and Chrysomela lapponica. Chemoecology 5/6:185–189.

    Article  Google Scholar 

  • Gross, J., Müller, C., Vilcinskas, A., and Hilker, M. 1998. Antimicrobial activity of the exocrine glandular secretions, hemolymph and larval regurgitate of the mustard leaf beetle Phaedon cochleariae. J. Invertebr. Pathol. 72:296–303.

    Article  PubMed  Google Scholar 

  • Gross, J., Podsiadlowski, L., and Hilker, M. 2002. Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. J. Chem. Ecol. 28:317–331.

    Article  PubMed  CAS  Google Scholar 

  • Gross, J., Fatouros, N. E., Neuvonen, S., and Hilker, M. 2004. The importance of specialist natural enemies for Chrysomela lapponica in pioneering a new hostplant. Ecol. Entomol. 29:584–593.

    Article  Google Scholar 

  • Herzner, G., and Strohm, E. 2007. Fighting fungi with physics: Food wrapping by a solitary wasp prevents water condensation. Curr. Biol. 17:R46–R47.

    Article  PubMed  CAS  Google Scholar 

  • Herzner, G., Schmitt, T., Peschke, K., Hilpert, A., and Strohm, E. 2007. Food wrapping with the postpharyngeal gland secretion by females of the European beewolf Philanthus triangulum. J. Chem. Ecol. 33:849–859.

    Article  PubMed  CAS  Google Scholar 

  • Hilker, M., and Schulz, S. 1994. Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. J. Chem. Ecol. 20:1075–1093.

    Article  CAS  Google Scholar 

  • Hinton, H. E. 1951. On a little-known protective device of some chrysomelid pupae (Coleoptera). Proc. R. Entomol. Soc. Lond. 26:67–73.

    Google Scholar 

  • Hoffmann, J. A. 2003. The immune response of Drosophila. Nature 426:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6:65–70.

    Google Scholar 

  • Humber, R. A. 1996. Fungal pathogens of the Chrysomelidae and prospects of their use in biological control, pp. 93–115, in P. H., Jolivet, M. L., and Cox (eds.). Chrysomelidae Biology, SPB Academic Publ., Amsterdam, The Netherlands.

    Google Scholar 

  • Köpf, A., Rank, N. E., Roininen, H., and Tahvanainen, J. 1997. Defensive larval secretions of leaf beetles attract a specialist predator Parasyrphus nigritarsis. Ecol. Entomol. 22:176–183.

    Article  Google Scholar 

  • Kovac, D., and Maschwitz, U. 1990. Secretion-grooming in aquatic beetles (Hydradephaga): A chemical protection against contamination of the hydrofuge respiratory region. Chemoecology 1:131–138.

    Article  CAS  Google Scholar 

  • Kuhn, J., Pettersson, E. M., Feld, B., Burse, A., Termonia, A., Pasteels, J. M., and Boland, W. 2004. Selective transport systems mediate sequestration of plant glucosides in leaf beetles: A molecular basis for adaptation and evolution. Proc. Natl. Acad. Sci. U. S. A. 101:13808–13813.

    Article  PubMed  CAS  Google Scholar 

  • Nahrung, H. F., Dunstan, P. K., and Allen, G. R. 2001. Larval gregariousness and neonate establishment of the eucalypt-feeding beetle Chrysophtharta agricola (Coleoptera: Chrysomelidae: Paropsini). Oikos 94:358–364.

    Article  Google Scholar 

  • Oldham, N. J., Veith, M., and Boland, W. 1996. Iridoid monoterpene biosynthesis in insects: evidence for a de novo pathway occurring in the defensive glands of Phaedon armoraciae (Chrysomelidae) leaf beetle larvae. Naturwissenschaften 83:470–473.

    CAS  Google Scholar 

  • Pasteels, J. M., Braekman, J.-C., Daloze, D., and Ottinger, R. 1982. Chemical defence in chrysomelid larvae and adults. Tetrahedron 38:1891–1897.

    Article  CAS  Google Scholar 

  • Pasteels, J. M., Daloze, D., and Rowell-Rahier, M. 1986. Chemical defence in chrysomelid eggs and neonate larvae. Physiol. Entomol. 11:29–37.

    CAS  Google Scholar 

  • Pasteels, J. M., Braekman, J.-C., and Daloze, D. 1988. Chemical defence in the Chrysomelidae, pp. 233–252, in P. H. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). Biology of ChrysomelidaeKluwer Academic Publ., Dordrecht, The Netherlands.

    Google Scholar 

  • Rosengaus, R. B., Lefebvre, M. L., and Traniello, J. F. A. 2000. Inhibition of fungal spore germination by Nasutitermes: Evidence for a possible antiseptic role of soldier defensive secretions. J. Chem. Ecol. 26:21–39.

    Article  CAS  Google Scholar 

  • Rostás, M., and Hilker, M. 2002. Feeding damage by larvae of the mustard leaf beetle deters conspecific females from oviposition and feeding. Entomol. Exp. Appl. 103:267–277.

    Article  Google Scholar 

  • Rowell-Rahier, M., and Pasteels, J. M. 1986. Economics of chemical defense in Chrysomelinae. J. Chem. Ecol. 12:1189–1203.

    Article  CAS  Google Scholar 

  • Royet, J., Reichhart, J. M., and Hoffmann, J. A. 2005. Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17:11–17.

    Article  PubMed  CAS  Google Scholar 

  • StatSoft I. 1999. STATISTICA for Windows users manual, version 5.5.

  • Traniello, J. F., Rosengaus, R. B., and Savoie, K. 2002. The development of immunity in a social insect: Evidence for the group facilitation of disease resistance. Proc. Natl. Acad. Sci. U. S. A. 99:6838–6842.

    Article  PubMed  CAS  Google Scholar 

  • Tribolium Genome Sequencing Consortium 2008. The genome of the developmental model beetle and pest Tribolium castaneum. Nature: in press

  • Vilcinskas, A., and Götz, P. 1999. Parasitic fungi and their interactions with the insect immune system. Adv. Parasitol. 43:268–313.

    Google Scholar 

  • Vilcinskas, A., and Gross, J. 2005. Drugs from bugs: The use of insects as a valuable source of transgenes with potential in modern plant protection strategies. Journal of Pest Science 78:187–191.

    Article  Google Scholar 

  • Wain, R. L. 1943. The secretion of salicylaldehyde by the larvae of the brassy willow beetle (Phyllodecta vitellinae L.). Ann. Rep. Agric. Horticult. Res. Stat. 108–110.

  • Wallace, J. B., and Blum, M. S. 1969. Refined defensive mechanisms in Chrysomela scripta. Ann. Entomol. Soc. Am. 62:503–506.

    CAS  Google Scholar 

  • Wilson, K., Knell, R., Boots, M., and Koch-Osborne, J. 2003. Group living and investment in immune defence: an interspecific analysis. J. Anim. Ecol. 72:133–143.

    Article  Google Scholar 

  • Zvereva, E. L., and Rank, N. E. 2004. Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host. Oecologia 140:516–522.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gisbert Zimmermann (BBA Darmstadt, Germany) for providing the different strains of entomopathogenic bacteria and fungi and Monika Hilker (Berlin, Germany) for providing the GC-MS for analysis of headspace samples. The authors are indebted to Rod Snowdon (Giessen, Germany) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, J., Schumacher, K., Schmidtberg, H. et al. Protected by Fumigants: Beetle Perfumes in Antimicrobial Defense. J Chem Ecol 34, 179–188 (2008). https://doi.org/10.1007/s10886-007-9416-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9416-9

Keywords

Navigation