Skip to main content
Log in

Deer Responses to Repellent Stimuli

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Four repellents representing different modes of action (neophobia, irritation, conditioned aversion, and flavor modification) were tested with captive white-tailed deer in a series of two-choice tests. Two diets differing significantly in energy content were employed in choice tests so that incentive to consume repellent-treated diets varied according to which diet was treated. When the high-energy diet was treated with repellents, only blood (flavor modification) and capsaicin (irritation) proved highly effective. Rapid habituation to the odor of meat and bone meal (neophobia) presented in a sachet limited its effectiveness as a repellent under conditions with a high feeding motivation. Thiram, a stimulus used to condition aversions, was not strongly avoided in these trials, that included only limited exposures to the repellent. These data support previous studies indicating that habituation to odor limits the effectiveness of repellents that are not applied directly to food, while topically-applied irritants and animal-based products produce significant avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ANDELT, W. F., BURNHAM, K. P., and MANNING, J. A. 1991. Relative effectiveness of repellents for reducing mule deer damage. J. Wildl. Manage. 55: 341–347.

    Article  Google Scholar 

  • ANDELT, W. F., BAKER, D. L., and BURNHAM, K. P. 1992. Relative preference of captive cow elk for repellent-treated diets. J. Wildl. Manage. 56: 164–173.

    Article  Google Scholar 

  • ANDELT, W. F., BURNHAM, K. P., and BAKER, D. L. 1994. Effectiveness of capsaicin and bitrex repellents for deterring browsing by captive mule deer. J. Wildl. Manage. 58: 330–334.

    Article  Google Scholar 

  • BACHMANOV, A. A. and BEAUCHAMP, G. K. 2007 Taste receptor genes. Annu. Rev. Nutr. 27: 389–414.

    Article  CAS  PubMed  Google Scholar 

  • BELANT, J. L., SEAMANS, T. W., and TYSON, L. A. 1998. Predator urines as chemical barriers to white-tailed deer, pp. 359–362, in R. O. Baker and A. C. Crabb (eds.). Proceedings of the Eighteenth Vertebrate Pest Conference. University of California, Davis

    Google Scholar 

  • BENJAMINI, Y. and HOCHBERG, Y. 1995. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B—Methodol. 57: 289–300.

    Google Scholar 

  • BURRITT, E. A. and PROVENZA, F. D. 1989. Food aversion learning—Ability of lambs to distinguish safe from harmful foods. J. Anim. Sci. 67: 1732–1739.

    CAS  PubMed  Google Scholar 

  • CHABOT, D., GAGNON, P., and DIXON, E. A. 1996. Effect of predator odors on heart rate and metabolic rate of wapiti (Cervus elaphus canadensis). J. Chem. Ecol. 22: 839–868.

    Article  CAS  Google Scholar 

  • COTE, S. D., ROONEY, T. P., TREMBLAY, J. P., DUSSAULT, C., and WALLER, D.M. 2004. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. System. 35:113–147.

    Article  Google Scholar 

  • GLENDINNING, J. I. 1994. Is the bitter rejection response always adaptive? Physiol. Behav. 56: 1217–1227.

    Article  CAS  PubMed  Google Scholar 

  • JACOBS, G. H., DEEGAN, J. F., NEITZ, J., MURPHY, B. P., MILLER, K. V., and MARCHINTON, R. L. 1994. Electrophysiological measurements of spectral mechanisms in the retinas of 2 cervids—white-tailed deer (odocoileus-virginianus) and fallow deer (dama-dama). J. Comp. Physiol. [A]. 174: 551–557.

  • KAMIYA, A. and OSE, Y. 1984. Study of odorous compounds produced by putrefaction of foods. 5. Fatty-acids, sulfur-compounds and amines. J. Chromatogr. 292: 383–391.

    Article  CAS  Google Scholar 

  • KIMBALL, B. A. and NOLTE, D. L. 2005. Herbivore experience with plant defense compounds influences acquisition of new flavor aversions. App. Anim. Behav. Sci. 91: 17–34.

    Article  Google Scholar 

  • KIMBALL, B. A. and NOLTE, D. L. 2006. Development of a new deer repellent for the protection of forest resources. West. J. Appl. For. 21: 108–111.

    Google Scholar 

  • KIMBALL, B. A., NOLTE, D. L., and PERRY, K. B. 2005. Hydrolyzed casein reduces browsing of trees and shrubs by white-tailed deer. HortScience. 40: 1810–1814.

    CAS  Google Scholar 

  • KIMBALL, B. A., RUSSELL, J. H., DEGRAAN, J. P., and PERRY, K. R. 2008. Screening hydrolyzed casein as a deer repellent for reforestation applications. West. J. Appl. For. 23: 172–176.

    Google Scholar 

  • LEMIEUX, N. C., MAYNARD, B. K., and JOHNSON, W. A. 2000. Evaluation of commercial deer repellents on ornamentals in nurseries. J. Environ. Hort. 18:5–8.

    Google Scholar 

  • LEWISON, R., BEAN, N. J., ARONOV, E., MCCONNELL, JR., J. E., and MASON, J. R. 1995. Similarities between big game repellent and predator urine repellency to white-tailed deer: The importance of sulfur and fatty acids, pp. 145-148, in M. M. King (ed.). Proceedings of the Eastern Wildlife Damage Control Conference. North Carolina Cooperative Extension Service, Raleigh

  • MAITA, K., TSUDA, S., and SHIRASU, Y. 1991. Chronic toxicity studies with thiram in wistar rats and beagle dogs. Fundam. Appl. Toxicol. 16: 667–686.

    Article  CAS  PubMed  Google Scholar 

  • McGRAW, J. B. and FUREDI, M. A. 2005. Deer browsing and population viability of a forest understory plant. Science 307:920–922.

    Article  CAS  PubMed  Google Scholar 

  • MILUNAS, M. C., RHOADS, A. F., and MASON, J. R. 1994. Effectiveness of odor repellents for protecting ornamental shrubs from browsing by white-tailed deer. Crop Protect. 13: 393–397.

    Article  Google Scholar 

  • NOLTE, D. L. 1998. Efficacy of selected repellents to deter deer browsing on conifer seedlings. Int. Biodeterior. Biodegrad. 42:101–107.

    Article  CAS  Google Scholar 

  • NOLTE, D. L. 1999. Behavioral approaches for limiting depredation by wild ungulates, pp. 60–69, in K. L. Launchbaugh, D. Sanders, and J. C. Mosely (eds.). Grazing Behavior of Livestock and Wildlife. University of Idaho, Moscow

    Google Scholar 

  • NOLTE, D. L. and WAGNER, K. K. 2000. Comparing the efficacy of delivery systems and active ingredients of deer repellents, pp. 93–100, in T. P. Salmon and A. C. Crabb (eds.). Proceedings of the Nineteenth Vertebrate Pest Conference. University of California, Davis

    Google Scholar 

  • NOLTE, D. L., MASON, J. R., EPPLE, G., ARONOV, E., and CAMPBELL, D. L. 1994a. Why are predator urines aversive to prey? J. Chem. Ecol. 20: 1505–1516.

    Article  CAS  Google Scholar 

  • NOLTE, D. L., MASON, J. R., and LEWIS, S. L. 1994b. Tolerance of bitter compounds by an herbivore, Cavia porcellus. J. Chem. Ecol. 20: 303–308.

    Article  CAS  Google Scholar 

  • PFISTER, J. A., MULLERSCHWARZE, D., and BALPH, D. F. 1990. Effects of predator fecal odors on feed selection by sheep and cattle. J. Chem. Ecol. 16: 573–583.

    Article  Google Scholar 

  • PROVENZA, F. D. 1995a. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manage. 48: 2–17.

    Article  Google Scholar 

  • PROVENZA, F. D. 1995b. Tracking variable environments—there is more than one kind of memory. J. Chem. Ecol. 21: 911–923.

    Article  CAS  Google Scholar 

  • RILEY, A. L. and TUCK, D. L. 1985. Conditioned taste-aversions—a behavioral index of toxicity. Ann. N. Y. Acad. Sci. 443: 272–292.

    Article  CAS  PubMed  Google Scholar 

  • SAS. sas/stat. [9.1]. 2002. Cary, NC, SAS Institute Inc.

  • TALROSE, V., YERMAKOV, A. N., USOV, A. A., GONCHAROVA, A. A., LESKIN, A. N., MESSINEVA, N. A., TRUSOVA, N. V., and EFIMKINA, M. V. 2009. UV/visible spectra, in Linstrom, P. J. and Mallard, W. G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MD <http://webbook.nist.gov>

  • WAGNER, K. K. and NOLTE, D. L. 2001. Comparison of active ingredients and delivery systems in deer repellents. Wildl. Soc. Bull. 29: 322–330.

    Google Scholar 

  • WYWIALOWSKI, A. P. 1998. Are wildlife-caused losses of agriculture increasing? pp. 363–370 in R. O. Baker, and A.C. Crabb (eds) Proc. of the 18th Vertebrate Pest Conference. University of California, Davis.

Download references

Acknowledgments

Mention of specific products does not constitute endorsement by the United States Department of Agriculture. The authors are particularly grateful for the helpful review comments of two anonymous reviewers and Drs. Gary Beauchamp and Marci Pelchat on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Kimball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimball, B.A., Taylor, J., Perry, K.R. et al. Deer Responses to Repellent Stimuli. J Chem Ecol 35, 1461–1470 (2009). https://doi.org/10.1007/s10886-009-9721-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9721-6

Keywords

Navigation