Skip to main content
Log in

Red, Yellow, Blue and Green Emission from Eu3+, Dy3+ and Bi3+ Doped Y2O3nano-Phosphors

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Rare earth elements (RE = Eu3+& Dy3+)and Bi3+ doped Y2O3 nanoparticles were synthesized by urea hydrolysis method in ethylene glycol, which acts as reaction medium as well as a capping agent, at a low temperature of 140 °C,followed by calcination of the obtained product. Transmission electron microscope (TEM) images reveals that ovoid shaped Y2O3 nanoparticles of around 22–24 nm size range were obtained in this method. The respective RE and Bi3+ doped Y2O3 precursor nanoparticles when heated at 600 and 750 °C, retains the same shape as that of the as-synthesized Y2O3 precursor samples. From EDAX spectra, the incorporation of RE ions into the host has been studied. XRD pattern reveals the crystalline nature of the heated nanoparticles and indicate the absence of any impurity phase other than cubic Y2O3.However, the as-synthesized nanoparticles were highly amorphous without the presence of any sharp XRD peaks. Photoluminescence study suggests that the synthesized samples could be used as red (Eu3+), yellow (Dy3+), blue and green (Bi3+)emitting phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hong KS, Meltzer RS, Bihari B, Williams DK, Tissue BM (1998) Spectral hole burning in crystalline Eu2O3 and Y2O3: Eu3+ nanoparticles. J Lumin 76&77:234–237

    Article  CAS  Google Scholar 

  2. Soo YL, Huang SW, Ming ZH, Kao YH, Smith GC, Goldburt E, Hodel R, Kulkarni B, Veliadis JVD, Bhargava RN (1998) X-ray excited luminescence and local structures in Tb-doped Y2O3nanocrystals. J Appl Phys 83:5404–5409

    Article  CAS  Google Scholar 

  3. R. N. Bhargava, V. Chhabra, B. Kulkarni, J. V. Veliadis (1998) Transformation of Deep Impurities to Shallow Impurities by Quantum Confinement. Phys. Stat. Sol. (b) 210 (2): 621–629

  4. van Schaik W, Blasse G (1992) Influence of defects on the luminescence Quantum yield of Y1.94Eu0.06O3. Chem Mater 4:410–415

    Article  Google Scholar 

  5. Fagherazzi G, Pollizi S, Bettinelli M, Spheghini A (2000) Yttria-based nano-sized powders: A new class of fractal materials obtained by combustion synthesis. J Mater Res 15(3):586–589

    Article  CAS  Google Scholar 

  6. Blasse G, Grabmir BC (1994) Energy transfer: luminescent materials, springer verlag. Berlin, Pp 91-107

  7. Ekambaram S, Patil KC, Maaza M (2005) Synthesis of lamp phosphors: facile combustion approach. J Alloys Compd 393:81–92

    Article  CAS  Google Scholar 

  8. Goldburt ET, Kulkarni B, Bhargava RN, Taylor J, Libera M (1997) Size dependent efficiency in Tb doped Y2O3nanocrystalline phosphor J. Lumin 72-74:190–192

    Article  CAS  Google Scholar 

  9. Wakefield G, AKeron H, Dobson PJ, Hutchinson JL (1999) Structural and optical properties of terbium oxide nanoparticles. J Phys Chem Solids 60(4):503–508

    Article  CAS  Google Scholar 

  10. Bhargava RN (1996) Doped nanocrystalline materials - physics and applications. J Lumin 70:85–94

    Article  CAS  Google Scholar 

  11. Park WJ, Yoon SG, Yoon DH (2006) Photoluminescence properties of Y2O3 co-doped with Eu and Bi compounds as red-emitting phosphor for white LED. J Electroceram 17:41–44

    Article  CAS  Google Scholar 

  12. Park WJ, Jung MK, Im SJ, Yoon DH (2008) Characterization of YVO4:Eu3+, Sm3+ red phosphor quicksynthesized by microwave rapid heating method mater. Sci and Eng B 146(1):95–98

    Article  CAS  Google Scholar 

  13. Réal F, Vallet V, PFlament J, Schamps J (2007) Ab initio embedded cluster study of the excitation spectrum and Stokes shifts of Bi3+−doped Y2O3. J. Chem. Phys 127(10):104705

    Article  PubMed  Google Scholar 

  14. Bordun OM, Dmitruk VV (2008) Luminescence centers in α-Bi2O3 ceramics. J. Appl. Spect. 75(5):681–684

    Article  CAS  Google Scholar 

  15. Tissue BM (1998) Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem Mater 10:2837–2845

    Article  CAS  Google Scholar 

  16. Haase M, Riwotzki K, Meyssamy H, Kornowski A (2000) Synthesis and properties of colloidal lanthanide-doped nanocrystals. J. Alloys Compds. 303-304:191–197

    Article  CAS  Google Scholar 

  17. Sun L, Yao J, Liao C, Yan C (2000) Rare earth activated nanosized oxide phosphors: Synthesis And Optical properties. J Lumin 87-90:447–500

    Article  Google Scholar 

  18. Zhang WW, Lou LR, Xia SD (2003) Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure. J Colloid Interface Sci 262(2):588–593

    Article  CAS  PubMed  Google Scholar 

  19. Tessari G, Bettinelli M, Speghini A, Ajo D, Pozza G, Depero LE, Allieri B, Sangaletti L (1999) Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3. Appl Surf Sci 144-145:686–689

    Article  CAS  Google Scholar 

  20. Tao Y, Zhao G, Ju X, Shao X, Zhang W, Xia S (1996) EXAFS studies of luminescence centres in Eu3+ doped nanoscale phosphors. Mater Lett 28:137–140

    Article  CAS  Google Scholar 

  21. Loitongbam RS, Rameshwor Singh W, Ganngam P, Shanta Singh N (2013) Blue and green emission from Ce3+ and Tb3+ co-doped Y2O3 nanoparticles. J Lumin 140:95–102

    Article  CAS  Google Scholar 

  22. Atabaev TS, Hwang Y-H, Kim H-K (2012) Color-tunable properties of Eu3+- and Dy3+-codoped Y2O3 phosphor particles. Nanoscale Res Lett 7(1):556–562

    Article  PubMed  PubMed Central  Google Scholar 

  23. Luwang MN, Ningthoujam RS, Srivastava SK, Vatsa RK (2011) Preparation of white light emitting YVO4: ln3+ and silica-coated YVO4:ln3+ (ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies. J Mater Chem 21:5326–5337

    Article  CAS  Google Scholar 

  24. Kirby AF, Richardson FS (1983) Detailed analysis of the optical absorption and emission spectra of Eu3+ in the trigonal (C3) Eu(BDM).H2O system. J Phys Chem 87:2544–2556

    Article  CAS  Google Scholar 

  25. Rajesh D, Ratnakaram YC, Seshadri M, Balakrishna A, Satya Krishna T (2012) Structural and luminescence properties of Dy3+ ion in strontium lithium bismuth borate glasses. J. of Lumin. 132:841–849

    Article  CAS  Google Scholar 

  26. Shanta Singh N, Ningthoujam RS, Luwang MN, Dorendrajit Singh S, Vatsa RK (2009) Luminescence, lifetime and Quantum yield studies of YVO4:ln3+ (ln3+ = Dy3+, Eu3+) nanoparticles: concentration and annealing effects. Chem Phys Lett 480:237–242

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Department of Physics, Manipur University, Canchipur, for providing the XRD and SEM facilities, and also thank SAIF, NEHU, Shillong, for TEM facilities. R.S. Loitongbam thanks University Grants Commission, New Delhi, for providing UGC Research Fellowship in Science for Meritorious Students. J. D. Hemam thanks Department of Science and Technology, New Delhi, for providing INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wairokpam Rameshwor Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, H.J., Singh, W.R. & Loitongbam, R.S. Red, Yellow, Blue and Green Emission from Eu3+, Dy3+ and Bi3+ Doped Y2O3nano-Phosphors. J Fluoresc 26, 875–889 (2016). https://doi.org/10.1007/s10895-016-1776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1776-5

Keywords

Navigation