Skip to main content
Log in

Specific Fluorescence Probe for Direct Recognition of Dimethoate Using Molecularly Imprinting Polymer on ZnO Quantum Dots

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

ZnO quantum dots (QDs) based molecularly imprinting polymer (MIP)-coated composite was described for specific detection of the dimethoate (DM) as a template. The MIP was synthesized by simple self-assembly of 3-aminopropyl triethoxysilane (APTES) monomers and tetraethyl ortho-silicate as cross linking agent in the presence of template molecules. The used imprinting course can improve the tendency of the prepared QDs toward the DM template molecules. The MIP-coated ZnO QDs showed a strong fluorescence emission which undergoes a quenching effect in the presence of DM. So, a selective probe could be designed based on these composites to recognize DM in water samples. Under optimized experimental conditions, a linear relationship between the emission intensity of MIP-coated ZnO QDs and concentration of DM, in the range of 0.02–3.2 mg L−1 with a detection limit of 0.006 mg L−1. Combination of high specificity of MIP element and distinct fluorescence features of ZnO QDs provides a sensitive and selective recognizing method for pesticide detection. The developed method was successfully applied for the determination of DM contamination in environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liang H, Song D, Gong J (2014) Signal-on electrochemiluminescence of biofunctional CdTe quantum dots for biosensing of organophosphate pesticides. Biosens Bioelectron 53:363–369

    Article  CAS  PubMed  Google Scholar 

  2. Lv Y, Lin Z, Feng W, Zhou X, Tan T (2007) Selective recognition and large enrichment of dimethoate from tea leaves by molecularly imprinted polymers. Biochem Eng J 36:221–229

    Article  CAS  Google Scholar 

  3. Tadeo JL, Sanchez-Brunete C, González L (2008) Pesticides: classification and properties. In: Tadeo JL (ed) Analysis of pesticides in food and environmental samples. CRC Press, Taylor & Francis Group LLC, Boca Raton, pp 1–35

    Chapter  Google Scholar 

  4. Khan BA, Farid A, Asi MR, Shah H, Badshah AK (2009) Determination of residues of trichlorfon and dimethoate on guava using HPLC. Food Chem 114:286–288

    Article  CAS  Google Scholar 

  5. Bagyalakshmi J, Kavitha G, Ravi TK (2011) Residue determination of dimethoate in leafy vegetables (spinach) using RP-HPLC. Int J Pharm Sci Res 2:62–64

    Google Scholar 

  6. Barrek S, Olivier P, Marie-Florence GL (2003) Determination of residual pesticides in olive oil by GC–MS and HPLC–MS after extraction by size-exclusion chromatography. Anal Bioanal Chem 376:355–359

    Article  CAS  PubMed  Google Scholar 

  7. Polgár L, Kmellár B, García-Reyes JF, Fodor P (2012) Comprehensive evaluation of the clean-up step in QuEChERS procedure for the multi-residue determination of pesticides in different vegetable oils using LC-MS/MS. Anal Methods 4:1142–1148

    Article  Google Scholar 

  8. Salm P, Taylor PJ, Roberts D, de Silva J (2009) Liquid chromatography–tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate, fenthion, diazinon and chlorpyrifos in human blood. J Chromatogr B 877:568–574

    Article  CAS  Google Scholar 

  9. Cui L, He XP, Chen GR (2015) Recent progress in quantum dot based sensors. RSC Adv 5:26644–26663

    Article  CAS  Google Scholar 

  10. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  CAS  PubMed  Google Scholar 

  11. Ren X, Chen L (2015a) Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal Bioanal Chem 407:8087–8095

    Article  CAS  PubMed  Google Scholar 

  12. Xu SF, Lu HZ, Li JH, Song XL, Wang AX, Chen LX, Han SB (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. Appl Mater Interfaces 5:8146–8154

    Article  CAS  Google Scholar 

  13. Zhang Z, Li JH, Wang XY, Shen DZ, Chen LX (2015) Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin. Appl Mater Interfaces 7:9118–9127

    Article  CAS  Google Scholar 

  14. Hagura N, Ogi T, Shirahama T, Iskandar F, Okuyama K (2011a) Highly luminescent silica-coated ZnO nanoparticles dispersed in an aqueous medium. J Lumin 131:921–925

    Article  CAS  Google Scholar 

  15. Hagura N, Takeuchi T, Takayama S, Iskandar F, Okuyama K (2011b) Enhanced photoluminescence of ZnO–SiO2 nanocomposite particles and the analyses of structure and composition. J Lumin 131:138–146

    Article  CAS  Google Scholar 

  16. Fonoberov VA, Alim KA, Balandin AA, Xiu F, Liu J (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B 73:165317

    Article  Google Scholar 

  17. Segets D, Gradl J, Taylor RK, Vassilev V, Peukert W (2009) Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3:1703–1710

    Article  CAS  PubMed  Google Scholar 

  18. Asok A, Gandhi MN, Kulkarni AR (2012) Enhanced visible photoluminescence in ZnO quantum dots by promotion of oxygen vacancy formation. Nano 4:4943–4946

    CAS  Google Scholar 

  19. Xiong HM, Shchukin DG, Möhwald H, Xu Y, Xia YY (2009) Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed 48:2727–2731

    Article  CAS  Google Scholar 

  20. Xu X, Xu C, Shi Z, Yang C, Yu B, Hu J (2012) Identification of visible emission from ZnO quantum dots: excitation-dependence and size-dependence. J Appl Phys 111:083521

    Article  Google Scholar 

  21. Zhao D, Song H, Hao L, Liu X, Zhang L, Lv Y (2013) Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 107:133–139

    Article  CAS  PubMed  Google Scholar 

  22. Fonoberov VA, Balandin AA (2004) Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes. Appl Phys Lett 85:5971–5973

    Article  CAS  Google Scholar 

  23. Wu YL, Lim CS, Fu S, Tok AIY, Lau HM, Boey FYC, Zeng XT (2007) Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology 18:215604

    Article  Google Scholar 

  24. Qu F, Santos DR, Dantas NO, Monte AFG, Morais PC (2004) Effects of nanocrystal shape on the physical properties of colloidal ZnO quantum dots. Phys E 23:410–415

    Article  CAS  Google Scholar 

  25. Patra MK, Manoth M, Singh VK, Gowd GS, Choudhry VS, Vadera SR, Kumar N (2009) Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow. J Lumin 129:320–324

    Article  CAS  Google Scholar 

  26. Ren X, Chen L (2015b) Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron 64:182–188

    Article  CAS  PubMed  Google Scholar 

  27. Singh K, Mehta SK (2016) Luminescent ZnO quantum dots as an efficient sensor for free chlorine detection in water. Analyst 141:2487–2492

    Article  CAS  PubMed  Google Scholar 

  28. Chen LX, Xu SF, Li JH (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922–2942

    Article  CAS  PubMed  Google Scholar 

  29. Garcia R, Freitas AMC (2011) Application of molecularly imprinted polymers for the analysis of pesticide residues in food—a highly selective and innovative approach. Am J Anal Chem 2(08):16

    Article  Google Scholar 

  30. Bedwell TS, Whitcombe MJ (2016) Analytical applications of MIPs in diagnostic assays: future perspectives. Anal Bioanal Chem 408:1735–1751

    Article  CAS  PubMed  Google Scholar 

  31. Martins N, Carreiro EP, Simões M, Cabrita MJ, Burke AJ, Garcia R (2015) An emerging approach for the targeting analysis of dimethoate in olive oil: the role of molecularly imprinted polymers based on photo-iniferter induced “living” radical polymerization. React Funct Polym 86:37–46

    Article  CAS  Google Scholar 

  32. Vasapollo G, Sole RD, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:5908–5945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang J, Xiang L (2016) Development of a probe based on quantum dots embedded with molecularly imprinted polymers to detect parathion. Pol J Environ Stud 25:787–793

    Article  CAS  Google Scholar 

  34. Abbasifar J, Samadi-Maybodi A (2016) Selective determination of atropine using poly dopamine-coated molecularly imprinted Mn-doped ZnS quantum dots. J Fluoresc 26:1645–1652

    Article  CAS  PubMed  Google Scholar 

  35. Huy BT, Seo MH, Zhang X, Lee YI (2014) Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens Bioelectron 57:310–316

    Article  CAS  Google Scholar 

  36. Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A (2016) Synthesis and characterization of novel molecularly imprinted polymer–coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron 75:213–221

    Article  PubMed  Google Scholar 

  37. Amjadi M, Jalili R, Manzoori JL (2015) A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots. Luminescence 31:633–639

    Article  PubMed  Google Scholar 

  38. Ge S, Lu J, Ge L, Yan M, Yu J (2011) Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochim Acta A 79:1704–1709

    Article  CAS  Google Scholar 

  39. Liu J, Chen H, Lin Z, Lin JM (2010) Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82:7380–7386

    Article  CAS  PubMed  Google Scholar 

  40. Wei F, Wu Y, Xu G, Gao Y, Yang J, Liu L, Zhou P, Hu Q (2014) Molecularly imprinted polymer based on CdTe@ SiO2 quantum dots as a fluorescent sensor for the recognition of norepinephrine. Analyst 139:5785–5792

    Article  CAS  PubMed  Google Scholar 

  41. Wang HF, HeY JTR, Yan XP (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81:1615–1621

    Article  CAS  PubMed  Google Scholar 

  42. Zhang W, He XW, Chen Y, Li WY, Zhang YK (2011) Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 26:2553–2558

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Ma Y, Li H, Wang L (2011) Composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem 84:386–395

    Article  PubMed  Google Scholar 

  44. Singh K, Chaudhary GR, Singh S, Mehta SK (2014) Synthesis of highly luminescent water stable ZnO quantum dots as photoluminescent sensor for picric acid. J Lumin 154:148–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Tabriz Branch, Islamic Azad University for the financial support of this research, which is based on a research project contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Vahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahid, B. Specific Fluorescence Probe for Direct Recognition of Dimethoate Using Molecularly Imprinting Polymer on ZnO Quantum Dots. J Fluoresc 27, 1339–1347 (2017). https://doi.org/10.1007/s10895-017-2068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2068-4

Keywords

Navigation