Skip to main content
Log in

Pseudo expected improvement criterion for parallel EGO algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The efficient global optimization (EGO) algorithm is famous for its high efficiency in solving computationally expensive optimization problems. However, the expected improvement (EI) criterion used for picking up candidate points in the EGO process produces only one design point per optimization cycle, which is time-wasting when parallel computing can be used. In this work, a new criterion called pseudo expected improvement (PEI) is proposed for developing parallel EGO algorithms. In each cycle, the first updating point is selected by the initial EI function. After that, the PEI function is built to approximate the real updated EI function by multiplying the initial EI function by an influence function of the updating point. The influence function is designed to simulate the impact that the updating point will have on the EI function, and is only corresponding to the position of the updating point (not the function value of the updating point). Therefore, the next updating point can be identified by maximizing the PEI function without evaluating the first updating point. As the sequential process goes on, a desired number of updating points can be selected by the PEI criterion within one optimization cycle. The efficiency of the proposed PEI criterion is validated by six benchmarks with dimension from 2 to 6. The results show that the proposed PEI algorithm performs significantly better than the standard EGO algorithm, and gains significant improvements over five of the six test problems compared against a state-of-the-art parallel EGO algorithm. Furthermore, additional experiments show that it affects the convergence of the proposed algorithm significantly when the global maximum of the PEI function is not found. It is recommended to use as much evaluations as one can afford to find the global maximum of the PEI function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252(3), 701–727 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(2), 370–380 (2007)

    Article  Google Scholar 

  4. Viana, F.A.C., Simpson, T.W., Balabanov, V., Toropov, V.: Metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J. 52(4), 670–690 (2014)

    Article  Google Scholar 

  5. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278 (2002)

    Article  Google Scholar 

  8. Parr, J.M., Keane, A.J., Forrester, A.I.J., Holden, C.M.E.: Infill sampling criteria for surrogate-based optimization with constraint handling. Eng. Optim. 44(10), 1147–1166 (2012)

    Article  MATH  Google Scholar 

  9. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Forrester, A.I., Keane, A.J., Bressloff, N.W.: Design and analysis of noisy computer experiments. AIAA J 44(10), 2331–2339 (2006)

    Article  Google Scholar 

  11. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evolut. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  12. Couckuyt, I., Deschrijver, D., Dhaene, T.: Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization. J. Glob. Optim. 60(3), 575–594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization, vol. 2, pp. 131–162. Springer, Berlin (2010)

    Google Scholar 

  14. Sóbester, A., Leary, S.J., Keane, A.J.: A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct. Multidiscipl. Optim. 27(5), 371–383 (2004)

    Article  Google Scholar 

  15. Feng, Z.W., Zhang, Q.B., Zhang, Q.F., Tang, Q.G., Yang, T., Ma, Y.: A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization. J. Glob. Optim. 61(4), 677–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Forrester, A., Sóbester, A., Keane, A.: Engineering Design Via Surrogate Aodelling: A Practical Guide. Wiley, New York (2008)

    Book  Google Scholar 

  17. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multiobjective infill for parallel Mmodel-based optimization. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) Learning and Intelligent Optimization. Lecture Notes in Computer Science, pp. 173–186. Springer, Berlin (2014)

  18. Hamza, K., Shalaby, M.: A framework for parallelized efficient global optimization with application to vehicle crashworthiness optimization. Eng. Optim. 46(9), 1200–1221 (2014)

    Article  Google Scholar 

  19. Hutter, F., Hoos, H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) Learning and Intelligent Optimization. Lecture Notes in Computer Science, pp. 55–70. Springer, Berlin (2012)

  20. Viana, F.A., Haftka, R.T., Watson, L.T.: Efficient global optimization algorithm assisted by multiple surrogate techniques. J. Glob. Optim. 56(02), 669–689 (2013)

    Article  MATH  Google Scholar 

  21. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Torn, A., Zilinskas, A.: Global Optimization. Springer, Berlin (1987)

    MATH  Google Scholar 

  23. Dixon, L.C.W., Szego, G.P.: The optimization problem: an introduction. In: Dixon, L.C.W., Szego, G.P. (eds.) Towards Global Optimization II. North Holland, New York (1978)

    Google Scholar 

  24. Sasena, M.J.: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. University of Michigan, Ann Arbor (2002)

    Google Scholar 

  25. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: Dace—a matlab Kriging toolbox. Technical Report IMM TR C2002 C12, Technical University of Denmark, Denmark (2002). http://www2.imm.dtu.dk/~hbn/dace/

  26. Viana F.A.C.: SURROGATES Toolbox Users Guide. Gainesville, FL, USA, version 3.0 edn. (2011). http://sites.google.com/site/felipeacviana/surrogatestoolbox

  27. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005). http://www1.icsi.berkeley.edu/~storn/code.html

  28. Barr, R.S., Hickman, B.L.: Reporting computational experiments with parallel algorithms: issues, measures, and experts’ opinions. ORSA J. Comput. 5(1), 2–18 (1993)

    Article  MATH  Google Scholar 

  29. Regis, R.G., Shoemaker, C.A.: Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182(2), 514–535 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, D., Qian, J. & Cheng, Y. Pseudo expected improvement criterion for parallel EGO algorithm. J Glob Optim 68, 641–662 (2017). https://doi.org/10.1007/s10898-016-0484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0484-7

Keywords

Navigation