Skip to main content

Advertisement

Log in

Polymeric Prodrugs Containing Metal-Based Anticancer Drugs

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Prodrugs optimize the absorption, distribution, metabolism, excretion and reduce unwanted toxicity of the parent drugs. The medicinal application of polymeric prodrugs for delivery of metal-based anticancer drugs is a field of increasing prominence because metal-based drugs offer possibilities for the design of therapeutic agents that are not readily available to organic compounds. This review is focused on the progress of polymeric prodrugs of metal based anticancer agents. A better understanding of the pharmacokinetics of these prodrugs will provide a rational for their further development into anticancer drugs for overcoming multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Finkel, M. Serrano, M.A. Blasco, The common biology of cancer and ageing. Nature 448, 767–774 (2007)

    Article  CAS  Google Scholar 

  2. A.F. Chambers, A.C. Groom, I.C. MacDonald, Nature Rev. Cancer 2, 563 (2002)

    CAS  Google Scholar 

  3. WHO fact sheet, No 297, February 2014. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 4th October 2014

  4. C. de Martel, J. Ferlay, S. Franceschi, J. Vignat, F. Bray, D. Forman, M. Plummer, Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012)

    Article  Google Scholar 

  5. E.W. Neuse, Synthetic polymers as drug-delivery vehicles in medicine. Metal-Based Drugs 2008, 469531 (2008). doi:10.1155/2008/469531. Hindawi Publishing Corporation

    Article  Google Scholar 

  6. A.Y. Shaikh, J.A. Shih, Chemotherapy-induced cardiotoxicity. Curr. Heart Fail Rep 9, 117–127 (2012)

    Article  CAS  Google Scholar 

  7. A.V. Thatishetty, N. Agresti, C.B. O’Brien, Chemotherapy-induced hepatotoxicity. Clin. Liver Dis. 17, 671–686 (2013)

    Article  Google Scholar 

  8. B.D. Humphreys, R.J. Soiffer, C.C. Magee, Renal failure associated with cancer and its treatment: an update. J. Am. Soc. Nephrol. 16, 151–161 (2005)

    Article  Google Scholar 

  9. E. Crowley, C.A. McDevitt, R. Callaghan, Multidrug Resistance in Cancer. Generating Inhibitors of P-Glycoprotein: Where to, Now? (Humana Press, New York, 2009), pp. 405–432. Springer Protocols

    Google Scholar 

  10. M. Hacker, W.S. Messer II, K.A. Bachmann, Pharmacology: Principles and Practice (Academic Press, Waltham, 2009), pp. 216–217

    Google Scholar 

  11. K.M. Huttunen, H. Raunio, J. Rautio, Prodrugs from serendipity to rational design. Pharmacol. Rev. 63, 750–771 (2011)

    Article  CAS  Google Scholar 

  12. K.-M. Wu, A new classification of prodrugs: regulatory perspectives. Pharmaceuticals 2, 77–81 (2009)

    Article  CAS  Google Scholar 

  13. H. Maeda, SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46, 169–185 (2001)

    Article  CAS  Google Scholar 

  14. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    CAS  Google Scholar 

  15. N.A. Rohini, A. Joseph, A. Mukerji, Polymeric prodrugs: recent achievements and general strategies. J. Antivir. Antiretrovir 2, S15 (2013)

    Google Scholar 

  16. S. Maher, D. Toomey, C. Condron, D. Bouchier-Hayes, Activation-induced cell death: the controversial role of Fas and Fas ligand in immune privilege and tumour counterattack. Immunol. Cell Biol. 80, 131–137 (2002)

    Article  CAS  Google Scholar 

  17. C.M. Peterson, J.M. Lu, Y. Sun, C.A. Peterson, J.G. Shiah, R.C. Straight, J. Kopeček, Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma. Cancer Res. 56, 3980–3985 (1996)

    CAS  Google Scholar 

  18. G. Pasut, F.M. Veronese, Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci. 32, 933–961 (2007)

    Article  CAS  Google Scholar 

  19. Y. Fang, G. Zheng, J. Yang, H. Tang, Y. Zhang, B. Kong, Y. Lv, C. Xu, A.M. Asiri, J. Zi, F. Zhang, D. Zhao, Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew. Chem. 126, 5470–5474 (2014)

    Article  Google Scholar 

  20. M. Vallet-Regi, Nanostructured mesoporous silica matrices in nanomedicine. J. Intern. Med. 267, 22–43 (2010)

    Article  CAS  Google Scholar 

  21. A.M. El-Toni, M.A. Ibrahim, J.P. Labis, A. Khan, M. Alhoshan, Optimization of synthesis parameters for mesoporous shell formation on magnetic nanocores and their application as nanocarriers for docetaxel cancer drug. Int. J. Mol. Sci. 14, 11496–11509 (2013)

    Article  CAS  Google Scholar 

  22. N.J. Wheate, D.P. Buck, A.I. Day, J.G. Collins, Cucurbit[n]uril binding of platinum anticancer complexes. Dalton Trans. 3, 451–458 (2006)

    Article  Google Scholar 

  23. N.J. Wheate, Improving platinum (II)-based anticancer drug delivery using cucurbit[n]urils. J. Inorg. Biochem. 102, 2060–2066 (2008)

    Article  CAS  Google Scholar 

  24. A.R. Kennedy, A.J. Florence, F.J. McInnes, N.J. Wheate, A chemical preformulation study of a host–guest complex of cucurbit[7]uril and a multinuclear platinum agent for enhanced anticancer drug delivery. Dalton Trans. 37(2009), 7695–7700 (2009)

    Article  CAS  Google Scholar 

  25. Z. Mahdavifar, S. Samiee, Theoretical investigation of inclusion complex formation of Gold(III)—Dimethyldithiocarbamate anticancer agents with cucurbit[n = 5,6]urils. Arabian J. Chem. 7, 425–435 (2014)

    Article  CAS  Google Scholar 

  26. M.P.M. Marques, Platinum and palladium polyamine complexes as anticancer agents: the structural factor. ISRN Spectrosc. 2013, 287353 (2013). Hindawi Publishing Corporation

    Google Scholar 

  27. H. Ringsdorf, Structure and properties of pharmacologically active polymers. J. Polym. Sci.: Pol. Sym. 51, 135–153 (1975)

    CAS  Google Scholar 

  28. S. Jaracz, J. Chen, L.V. Kuznetsova, I. Ojima, Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem. 13, 5043–5054 (2005)

    Article  CAS  Google Scholar 

  29. N. Larson, H. Ghandehari, Polymeric conjugates for drug delivery. Chem. Mater. 24, 840–853 (2012)

    Article  CAS  Google Scholar 

  30. Dendrimers. http://en.wikipedia.org/wiki/Dendrimers. Accessed 12th October 2014

  31. S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 57, 2106–2129 (2005)

    Article  CAS  Google Scholar 

  32. N. Vijayalakshmi, A. Ray, A. Malugin, H. Ghandehari, Carboxyl-terminated PAMAM-SN38 conjugates: synthesis characterization, and in vitro evaluation. Bioconjugate Chem. 21, 1804–1810 (2010)

    Article  CAS  Google Scholar 

  33. I.J. Majoros, C.R. Williams, A. Becker, J.R. Baker Jr, Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 502–510 (2009)

    Article  CAS  Google Scholar 

  34. D. Bhadra, S. Bhadra, S. Jain, N.K. Jain, A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 257, 111–124 (2003)

    Article  CAS  Google Scholar 

  35. H. He, Y. Li, X.R. Jia, J. Du, X. Ying, W.L. Lu, J.N. Lou, Y. Wei, PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32, 478–487 (2011)

    Article  CAS  Google Scholar 

  36. Y. Cheng, Z. Xu, M. Ma, T.J. Xu, Dendrimers as drug carriers: applications in different routes of drug administration. Pharm. Sci. 97, 123–143 (2008)

    Article  CAS  Google Scholar 

  37. R. Wiwattanapatapee, B. Carreno-Gomez, N. Malik, R. Duncan, Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17, 991–998 (2000)

    Article  CAS  Google Scholar 

  38. A.R. Menjoge, A.L. Rinderknecht, R.S. Navath, M. Faridnia, C.J. Kim, R. Romero, R.K. Miller, R.M.J. Kannan, Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy. Controll. Release 150, 326–338 (2011)

    Article  CAS  Google Scholar 

  39. M.T. Morgan, Y. Nakanishi, D.J. Kroll, A.P. Griset, M.A. Carnahan, M. Wathier, N.H. Oberlies, G. Manikumar, M.C. Wani, M.W. Grinstaff, Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 66, 11913–11921 (2006)

    Article  CAS  Google Scholar 

  40. R.K. Tekade, T. Dutta, V. Gajbhiye, N.K. Jain, Exploring dendrimer towards dual drug delivery. J. Microencapsul. 26, 287–296 (2009)

    Article  CAS  Google Scholar 

  41. G. Vilar, J. Tulla-Puchea, F. Albericio, Polymers and drug delivery systems. Current Drug Deliv. 9, 367–394 (2012)

    Article  CAS  Google Scholar 

  42. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008)

    Article  CAS  Google Scholar 

  43. G. Riess, Micellization of block copolymers. Prog. Polym. Sci. 28, 1107–1170 (2003)

    Article  CAS  Google Scholar 

  44. S.E. Dunn, A. Brindley, S.S. Davis, M.C. Davies, L. Illum, Polystyrene–poly(ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm. Res. 11, 1016–1022 (1994)

    Article  CAS  Google Scholar 

  45. R.K. Jain, Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 26, 71–90 (1997)

    Article  CAS  Google Scholar 

  46. W. Xu, P. Ling, T. Zhang, Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv. 2013, 340315 (2013)

    Article  CAS  Google Scholar 

  47. B. Kastenholz, Important contributions of a new quantitative preparative native continuous polyacrylamide gel electrophoresis (QPNC-PAGE) procedure for elucidating metal cofactor metabolisms in protein-misfolding diseasesa theory. Electroanalysis 18, 103–106 (2006)

    Article  CAS  Google Scholar 

  48. W.M. Kwiatek, T. Drewniak, M. Gajda, M. Galka, A.L. Hanson, T. Cichocki, Preliminary study on the distribution of selected elements in cancerous and non-cancerous kidney tissues. J. Trace Elem. Med Biol. 16, 155–160 (2002)

    Article  CAS  Google Scholar 

  49. S.K. Bharti, S.K. Singh, Recent developments in the field of anticancer metallopharmaceuticals. Int. J. Pharm Tech Res. 1, 1406–1420 (2009)

    CAS  Google Scholar 

  50. M.J. Clarke, Ruthenium metallopharmaceuticals. Coord. Chem. Rev. 236, 209–233 (2003)

    Article  CAS  Google Scholar 

  51. V. Brabec, O. Nov´akov´a, DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist. Updates 9, 111–122 (2006)

    Article  CAS  Google Scholar 

  52. C.G. Hartinger, M.A. Jakupec, S. Zorbas-Seifrieda, M. Groessl, A. Egger, W. Berger, H. Zorbas, P.J. Dyson, B.K. Keppler, KP1019, a new redox-active anticancer agent-Preclinical development and results of a clinical phase I study in tumor patients. Chem. Biodivers. 5, 2140–2155 (2008)

    Article  CAS  Google Scholar 

  53. E. Alessio, G. Mestroni, A. Bergamo, G. Sava, E. Alessio, G. Mestroni, A. Bergamo, G. Sava, Ruthenium antimetastatic agents. Curr. Topics Med. Chem. 4, 1525–1535 (2004)

    Article  CAS  Google Scholar 

  54. J. Rodrigues, M.G. Jardim, J. Figueira, M. Gouveia, H. Tomàs, K. Rissanen, Poly(alkylidenamines) dendrimers as scaffolds for the preparation of low-generation ruthenium based metallodendrimers. New J. Chem. 35, 1938–1943 (2011)

    Article  CAS  Google Scholar 

  55. P. Govender, A.K. Renfrew, C.M. Clavel, P.J. Dyson, B. Therrien, G.S. Smith, Antiproliferative activity of chelating N, O- and N, N-ruthenium(II) arene functionalised poly(propyleneimine) dendrimer scaffolds. Dalton Trans. 40, 1158–1167 (2011)

    Article  CAS  Google Scholar 

  56. P. Govender, L.C. Sudding, C.M. Clavel, P.J. Dyson, B. Therrien, S. Smith, The influence of RAPTA moieties on the antiproliferative activity of peripheral-functionalised poly(salicylaldiminato) metallodendrimers. Dalton Trans. 42, 1267–1277 (2013)

    Article  CAS  Google Scholar 

  57. A. Valente, M.H. Garcia, F. Marques, Y. Miao, C. Rousseau, P. Zinck, First polymer “ruthenium-cyclopentadienyl” complex as potential anticancer agent. J. Inorg. Biochem. 127, 79–81 (2013)

    Article  CAS  Google Scholar 

  58. P. Heffeter, A. Riabtseva, Y. Senkiv, C.R. Kowol, W. Körner, U. Jungwith, N. Mitina, B.K. Keppler, T. Konstantinova, I. Yanchuk, R. Stoika, A. Zaichenko, W. Berger, Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019. J. Biomed. Nanotechnol. 10, 877–884 (2014)

    Article  CAS  Google Scholar 

  59. A. Pitto-Barry, N.P.E. Barry, O. Zava, R. Deschenaux, B. Therrien, Encapsulation of pyrene-functionalized poly(benzyl ether) dendrons into a water-soluble organometallic cage. Chem. Asian J. 6, 1595–1603 (2011)

    Article  CAS  Google Scholar 

  60. B.M. Blunden, D.S. Thomas, M.H. Stenzel, Macromolecular ruthenium complexes as anti-cancer agents. Polym. Chem. 3, 2964 (2012)

    Article  CAS  Google Scholar 

  61. P. Umapathy, The chemical and biochemical consequences of the binding of the antitumour drug cisplatin and other platinum group metal complexes to DNA. Coordin. Chem. Rev. 95, 129–181 (1989)

    Article  CAS  Google Scholar 

  62. M.P.M. Marques, Platinum and palladium polyamine complexes as anticancer agents: the structural factor. ISRN Spectrosc. 2013, 287353 (2013). doi:10.1155/2013/287353. Hindawi Publishing Corporation

    Google Scholar 

  63. M. Tanaka, H. Kataoka, S. Yano, H. Ohi, K. Kawamoto, T. Shibahara, T. Mizoshita, Y. Mori, S. Tanida, T. Kamiya, T. Joh, Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells. BMC Cancer 13, 237 (2013)

    Article  CAS  Google Scholar 

  64. T.M. Silva, S.M. Fiuza, M.P.M. Marques, L. Persson, S. Oredsson, Increased breast cancer cell toxicity by palladination of the polyamine analogue N1, N11-bis(ethyl)norspermine. Amino Acids 46, 339–352 (2014)

    Article  CAS  Google Scholar 

  65. B. Ghalandari, A. Divsalar, A.A. Saboury, K. Parivar, The new insight into oral drug delivery system based on metal drugs in colon cancer therapy through β lactoglobulin/oxali-palladium nanocapsules. J. Photochem. Photobiol. B: Biol. 140, 255–265 (2014)

    Article  CAS  Google Scholar 

  66. B. Ghalandari, A. Divsalar, A.A. Saboury, T. Haertlé, K. Parivar, R. Bazl, M. Eslami-Moghadam, M. Amanlou, Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 24, 1038–1046 (2014)

    Article  CAS  Google Scholar 

  67. E.R. Tiekink, Gold derivatives for cancer treatment. Bioinorg. Chem. Applns. 53, 1–9 (2003)

    Google Scholar 

  68. I. Kostova, Gold coordination complexes as anticancer agents. Anticancer Agents Med. Chem. 6, 19–32 (2006)

    Article  CAS  Google Scholar 

  69. L. Ronconi, L. Giovagnini, C. Marzano, F. Bettio, R. Graziani, G. Pilloni, D. Fregona, Gold dithiocarbamate derivatives as potential antineoplastic agents: design, spectroscopic properties and in vitro antitumor activity. Inorg. Chem. 44, 1867–1881 (2005)

    Article  CAS  Google Scholar 

  70. L. Ronconi, C. Marzano, P. Zanello, M. Corsini, G. Miolo, C. Macca, A. Trevisan, D. Fregona, Gold(III) dithiocarbamate derivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties. J. Med. Chem. 49, 1648–1657 (2006)

    Article  CAS  Google Scholar 

  71. C.M. Che, R.W.Y. Sun, W.Y. Yu, C.B. Ko, N. Zhu, H. Sun, Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. 14, 1718–1719 (2003)

    Article  CAS  Google Scholar 

  72. C.T. Lum, L. Huo, R.W.Y. Sun, M. Li, H.F. Kung, C.M. Che, M.C. Lin, Gold(III) porphyrin 1a prolongs the survival of melanoma-bearing mice and inhibits angiogenesis. Acta Oncol. 50, 719–726 (2011)

    Article  CAS  Google Scholar 

  73. Y.F. To, R.W.Y. Sun, Y. Chen, V.S. Chan, W.Y. Yu, P.K.H. Tam, C.M. Che, M.C.L.S. Lin, Gold(III) porphyrin complex is more potent than cisplatin in inhibiting growth of nasopharyngeal carcinoma in vitro and in vivo. Int. J. Cancer 124, 1971–1979 (2009)

    Article  CAS  Google Scholar 

  74. C.T. Lum, X. Liu, R.W.Y. Sun, X.P. Li, Y. Peng, H.F. Kung, C.M. Che, M.C. Lin, Gold(III) porphyrin 1a inhibited nasopharyngeal carcinoma metastasis in vivo and inhibited cell migration and invasion in vitro. Cancer Lett. 294, 159–166 (2010)

    Article  CAS  Google Scholar 

  75. C.T. Lum, A.S.T. Wong, M.C.M. Lin, C.M. Che, R.W.Y. Sun, A gold(III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells. Chem. Commun. 49, 4364–4366 (2012)

    Article  Google Scholar 

  76. J.J. Yan, R.W.Y. Sun, P. Wu, M.C.M. Lin, A.S.C. Chan, C.-M. Che, Encapsulation of dual cytotoxic and anti-angiogenic gold(III) complexes by gelatin-acacia microcapsules: In vitro and in vivo studies. Dalton Trans. 39, 7700–7705 (2010)

    Article  CAS  Google Scholar 

  77. P. Lee, R. Zhang, V. Li, X. Liu, R.W. Sun, C.M. Che, K.K. Wong, Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation. Int. J. Nanomed. 7, 731–737 (2012)

    CAS  Google Scholar 

  78. J.J. Zhang, W. Lu, R.W.Y. Sun, C.M. Che, Organogold(III) supramolecular polymers for anticancer treatment. Angew. Chem. Int. Ed. 51, 4882–4886 (2012)

    Article  CAS  Google Scholar 

  79. C. Marzano, M. Pellei, F. Tisato, C. Santini, Copper Complexes as Anticancer Agents. Anti-Cancer Agents Med. Chem. 9, 185–211 (2009)

    Article  CAS  Google Scholar 

  80. D.S. Sigman, A. Mazumder, D.M. Perrin, Chemical nucleases. Chem. Rev. 93, 2295–2316 (1993)

    Article  CAS  Google Scholar 

  81. A. Pramanik, D. Laha, P. Pramanik, P. Karmakar, A novel drug “copper acetylacetonate” loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting. J. Drug Target. 22, 23–33 (2014)

    Article  CAS  Google Scholar 

  82. R.S. Kumar, S. Arunachalam, V.S. Periasamy, C.P. Preethy, A. Riyasdeen, M.A. Akbarsha, DNA binding and biological studies of some novel water-soluble polymer–copper(II)–phenanthroline complexes. Eur. J. Med. Chem. 43, 2082–2091 (2008)

    Article  CAS  Google Scholar 

  83. R.S. Kumar, V.S. Periasamy, C.P. Paul, A. Riyasdeen, S. Arunachalam, M.A. Akbarsha, Cytotoxic effect of a polymer–copper(II) complex containing2,2-bipyridyl ligand on human lung cancer cells. Med. Chem. Res. 20, 726–731 (2011)

    Article  CAS  Google Scholar 

  84. S. Ambika, S. Arunachalam, R. Arunb, K. Premkumar, Synthesis, nucleic acid binding, anticancer and antimicrobial activities of polymer–copper(II) complexes containing intercalative phenanthroline ligand(DPQ). RSC Adv. 3, 16456–16468 (2013)

    Article  CAS  Google Scholar 

  85. M. Gielen, H. Ma, A. Bouhdid, H. Dalil, M. Biesemans, R. Willem, Di-n-butyl-tri-n- butyl- and triphenyltin dl-terebates: synthesis characterization and in vitro antitumour activity. Met.-Based Drugs 4, 193–197 (1997)

    Article  CAS  Google Scholar 

  86. Q. Li, F.M.C. Guedes da Silva, A.J.L. Pombeiro, Diorganotin(iv) derivatives of substituted benzohydroxamic acids with high antitumor activity. Chemistry: A European Journal 10, 1456–1462 (2004). doi:10.1002/chem.200305266

    Article  CAS  Google Scholar 

  87. L. Yunlan, L. Jinjie, L. Qingshan, Mechanisms by which the antitumor compound di-n-butyl-di-(4-Chlorobenzohydroxamato)tin(IV)induces apoptosis and the mitochondrial-mediated signaling pathway in human cancer sgc-7901 cells. Mol. Carcinog. 49, 566–581 (2010)

    Google Scholar 

  88. S. Tabassum, C. Pettinari, Organotin(IV) derivatives of l-cysteine and their in vitro anti-tumor properties. J. Organomet. Chem. 691, 1761–1766 (2006)

    Article  CAS  Google Scholar 

  89. T. Li, L. Yunlan, G. Rui, Q.S. Li, Oxidative stress in di-n-butyl-di-(4-chloro- benzohydroxamato)tin (IV)-induced hepatotoxicity determined by proteomic profiles. Toxicol. Lett. 213, 167–173 (2012)

    Article  CAS  Google Scholar 

  90. K. Navakoski de Oliveira, V. Andermark, S. von Grafenstein, L.A. Onambele, G. Dahl, R. Rubbiani, G. Wolber, C. Gabbiani, L. Messori, A. Prokop, I. Ott, Butyltin(IV) benzoates: inhibition of thioredoxin reductase, tumor cell growth inhibition, and interactions with proteins. ChemMedChem 8, 256–264 (2013)

    Article  CAS  Google Scholar 

  91. X. Shang, J. Cui, J. Wu, A.J.L. Pombeiro, Q. Li, Polynuclear diorganotin(IV) complexes with arylhydroxamates: syntheses, structures and in vitro cytotoxic activities. J. Inorg. Biochem. 102, 901–909 (2008)

    Article  CAS  Google Scholar 

  92. C.E. Carraher Jr, T.S. Sabir, M.R. Roner, K. Shahi, R.E. Bleicher, J.L. Roehr, K.D. Bassett, Synthesis of organotin polyamine ethers containing acyclovir and their preliminary anticancer and antiviral activity. J. Inorg. Organomet. Polym Mater. 16, 249–257 (2006)

    Article  CAS  Google Scholar 

  93. G. Barot, K.R. Shahi, M.R. Roner, C.E. Carraher Jr, Synthesis, structural characterization, and ability to inhibit cancer growth of a series of organotin poly(ethylene glycols). J. Inorg. Organomet. Polym. 17, 595–603 (2007)

    Article  CAS  Google Scholar 

  94. D. Siegmann-Louda, C. Carraher, D. Nagy, D. Snedden, J. Rosa, Polym. Mater. Sci. Eng. 89, 487 (2003)

    CAS  Google Scholar 

  95. C. Carraher, K. Morie, Polym. Mater. Sci. Eng. 91, 556 (2004)

    CAS  Google Scholar 

  96. C. Carraher, L. Lanz, J. Polym. Mater. 21, 51 (2005)

    Google Scholar 

  97. M. Roner, C. Carraher, T. Sabir, K. Shahi, J. Roehr, K. Bassett, Polym. Mater. Sci. Eng. 95, 525 (2006)

    CAS  Google Scholar 

  98. C. Carraher, Y. Ashida, G. Battin, Polym. Mater. Sci. Eng. 95, 556 (2006)

    CAS  Google Scholar 

  99. C. Carraher, T. Sabir, M. Roner, K. Shahi, R. Bleicher, J. Roehr, K. Bassett, JIOPM 16, 249 (2006)

    CAS  Google Scholar 

  100. C. Carraher, T. Sabir, C.L. Carraher, J. Polym. Mater. 23, 143 (2006)

    CAS  Google Scholar 

  101. M. Roner, C. Carraher, J. Roehr, K. Bassett, J. Polym. Mater. 23, 153 (2006)

    CAS  Google Scholar 

  102. R. Doucette, D. Siegmann-Louda, C. Carraher, A. Cardoso, Polym. Mater. Sci. Eng. 91, 564 (2004)

    CAS  Google Scholar 

  103. Y. Fu, M.J. Romero, A. Habtemariam, M.E. Snowden, L. Song, G.J. Clarkson, B. Qamar, A.M. Pizarro, P.R. Unwin, P.J. Sadler, The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes. Chemical Sci. 3, 2485–2494 (2012)

    Article  CAS  Google Scholar 

  104. H. Kostrhunova, J. Florian, O. Novakova, A.F.A. Peacock, P.J. Sadler, V. Brabec, DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media. J. Med. Chem. 51, 3635–3643 (2008)

    Article  CAS  Google Scholar 

  105. S.H. van Rijt, P.J. Sadler, Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Disc. Today 14, 1089–1097 (2009)

    Article  CAS  Google Scholar 

  106. H.S. van Rijt, H. Kostrhunova, V. Brabec, P.J. Sadler, Functionalization of osmium arene anticancer complexes with (poly)arginine: effect on cellular uptake, internalization and cytotoxicity. Bioconjugate Chem 22, 218–226 (2011)

    Article  CAS  Google Scholar 

  107. P. Govender, F. Edafe, B.C.E. Makhubela, P.J. Dyson, B. Therrien, G.S. Smith, Neutral and cationic osmium(II)-arene metallodendrimers: synthesis, characterisation and anticancer activity. Inorg. Chim. Acta 409, 112–120 (2014)

    Article  CAS  Google Scholar 

  108. G.M. Sulaiman, A.A.W. Mohammad, H.E. Abdul-Wahed, M.M. Ismail, Dig. J. Nanomater. Biostruct. 8, 273 (2013)

    Google Scholar 

  109. S. Moaddab, H. Ahari, D. Shahbazzadeh, A.A. Motallebi, A.A. Anvar, J. Rahman-Nya, M.R. Shokrgozar, Int. Nano. Lett. 1, 11 (2011)

    CAS  Google Scholar 

  110. W.J. Youngs, N. Robishaw, M.J. Panzner, K. Hindi, D.A. Medvetz, J. Youngs, C. Tessier, A. Ditto, Y.H. Yun, J. Bauer, D. Lindner, Treatment of breast cancer with an antitumor drug encapsulated in biodegradable polymeric nanoparticles. Nanotech Con-ference & Expo, 2, 5–8 (2009). http://www.nsti.org/7B0BF9F0-5EF5-4758-96879DFBECFADB8A/FinalDownload/DownloadId-797F313D90A1AEC1568812B3D7ADA4F9/7B0BF9F0-5EF5-4758-9687-9DFBECFADB8A/publications/Nanotech/2009/pdf/310.pdf. Acessed 7th November 2014

  111. W.J. Youngs, A.R. Knapp, P.O. Wager, C.A. Tessier, Nanoparticle encapsulated silver carbene complexes and their antimicrobial and anticancer properties: a perspective. Dalton Trans. 41, 327–336 (2012)

    Article  CAS  Google Scholar 

  112. H. Grunicke, W. Doppler, W. Helliger, B.J. Hermann, J. Hofmann, H. Lindner, B. Puschendorf, Tumor biochemistry as basis for advances in tumor chemotherapy. Arch Geschwulstforsch 56, 193–201 (1986)

    CAS  Google Scholar 

  113. O.S. Zhukova, I.A.V. Dobrynin, Current results and perspectives of the use of human tumor cell lines for antitumor drug screening. Vopr. Onkol. 47, 706–7099 (2001)

    CAS  Google Scholar 

  114. P.J. O’Dwyer, S.W. Johnson, T.C. in Hamilton, Cisplatin and Its Analogues, vol. 2, ed. by V.T. DeVita, S. Hellman, S.A. Rosenberg In Cancer Principles and Practice of Oncology (Lippincott-Raven, Philadelphia, 1997) pp 418–431

  115. E.R. Jamieson, S.J. Lippard, Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 99, 2467–2498 (1999)

    Article  CAS  Google Scholar 

  116. M. Kartalou, J.M. Essigmann, Mechanism of resistance to cisplatin. Mutat. Res. 478, 23–43 (2001)

    Article  CAS  Google Scholar 

  117. H. Cabral, N. Nishiyama, K. Kataoka, Optimization of (1,2-diamino-cyclohexane)platinum(II)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity. J. Control. Release 121, 146–155 (2007)

    Article  CAS  Google Scholar 

  118. N. Nishiyama, S. Okazaki, H. Cabral, M. Miyamoto, Y. Kato, Y. Sugiyama, K. Nishio, Y. Matsumura, K. Kataoka, Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 63, 8977–8983 (2003)

    CAS  Google Scholar 

  119. H. Uchino, Y. Matsumura, T. Negishi, F. Koizumi, T. Hayashi, T. Honda, N. Nishiyama, K. Kataoka, S. Naito, T. Kakizoe, Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer 93, 678–687 (2005)

    Article  CAS  Google Scholar 

  120. H. Cabral, N. Nishiyama, S. Okazaki, H. Koyama, K. Kataoka, Preparation and biological properties of dichloro(1,2-diaminocyclohexane) platinum(II) (DACHPt)-loaded polymeric micelles. J. Control Release 101, 223–232 (2005)

    Article  CAS  Google Scholar 

  121. N. Nishiyama, F. Koizumi, S. Okazaki, Y. Matsumura, K. Nishio, K. Kataoka, Differential gene expression profile between PC-14 cells treated with free cisplatin and cisplatin incorporated polymeric micelles. Bioconjug. Chem. 14, 449–457 (2003)

    Article  CAS  Google Scholar 

  122. N. Nishiyama, Y. Kato, Y. Sugiyama, K. Kataoka, Cisplatin-loadedpolymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm. Res. 18, 1035–1041 (2001)

    Article  CAS  Google Scholar 

  123. N. Nishiyama, M. Yokoyama, T. Aoyagi, T. Okano, Y. Sakurai, K. Kataoka, Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum(II) and poly(ethylene glycol)-poly(aspartic acid) block copolymer in an aqueous medium. Langmuir 15, 377–383 (1999)

    Article  CAS  Google Scholar 

  124. Y. Mizumura, Y. Matsumura, T. Hamaguchi, N. Nishiyama, K. Kataoka, T. Kawaguchi, W.J.M. Hrushesky, F. Moriyasu, T. Kakizoe, Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn. J. Cancer Res. 92, 328–336 (2001)

    Article  CAS  Google Scholar 

  125. V.T. Huynh, P. de Souza, M.H. Stenzel, Polymeric micelles with pendant dicarboxylato chelating ligands prepared via a michael addition for cis-platinum drug delivery. Macromolecules 44, 7888–7900 (2011)

    Article  CAS  Google Scholar 

  126. Y. Miura, T. Takenaka, K. Toh, S. Wu, H. Nishihara, M.R. Kano, Y. Ino, T. Nomoto, Y. Matsumoto, H. Koyama, H. Cabral, N. Nishiyama, K. Kataoka, Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood brain tumor barrier. ACS Nano 7, 8583–8592 (2013)

    Article  CAS  Google Scholar 

  127. V.B. Jadhav, Y.J. Jun, J.H. Song, M.K. Park, J.H. Oh, S.W. Chae, I.-S. Kim, S.-J. Choi, H.J. Lee, Y.S. Sohn, A novel micelle-encapsulated platinum(II) anticancer agent. J. Controll. Release 147, 144–150 (2010)

    Article  CAS  Google Scholar 

  128. H.T.T. Duong, V.T. Huynh, P. de Souza, M.H. Stenzel, Core-cross-linked micelles synthesized by clicking bifunctional Pt(IV) anticancer drugs to isocyanates. Biomacromolecules 11, 2290–2299 (2010)

    Article  CAS  Google Scholar 

  129. N. Malik, E.G. Evagorou, R. Duncan, Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10, 767–776 (2009)

    Article  Google Scholar 

  130. R. Duncan, N. Malik, Dendrimers: biocompatibility and potential for delivery of anticancer agents. Proc. Int. Symp. Control. Release Bioact. Mater. 23, 105–106 (1996)

    Google Scholar 

  131. E.R. Gillies, J.M.J. Fréchet, Dendrimers and dendritic polymers in drug delivery. Drug Disc. Today 10, 35–43 (2005)

    Article  CAS  Google Scholar 

  132. G.J. Kirkpatrick, J.A. Plumb, O.B. Sutcliffe, D.J. Flint, N.J. Wheate, Evaluation of anionic half generation 3.5-6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J. Inorg. Biochem. 105, 1115–1122 (2011)

    Article  CAS  Google Scholar 

  133. I. Haririan, M.S. Alavidjeh, M.R. Khorramizadeh, M.S. Ardestani, Z.Z. Ghane, H. Namazi, Anionic linear-globular dendrimer-cis-platinum (II)conjugates promote cytotoxicity in vitro against different cancer cell lines. Int. J. Nanomed. 5, 63–75 (2010)

    Article  CAS  Google Scholar 

  134. T. Kapp, A. Dullin, R. Gust, Platinum(II)–Dendrimer conjugates: synthesis and investigations on cytotoxicity cellular distribution, platinum release, DNA, and protein binding. Bioconjugate Chem. 21, 328–337 (2010)

    Article  CAS  Google Scholar 

  135. X. Zhao, S.C.J. Loo, P.P.-F. Lee, T.T.Y. Tan, C.K. Chu, Synthesis and cytotoxic activities of chloropyridylimineplatinum(II) and chloropyridyliminecopper(II) surface-functionalized poly(amidoamine) dendrimers. J. Inorg. Biochem. 104, 105–110 (2010)

    Article  CAS  Google Scholar 

  136. B.A. Howell, D. Fan, Poly(amidoamine) dendrimer-supported organoplatinum antitumour agents. Proc. R. Soc. A 466, 1515–1526 (2010)

    Article  CAS  Google Scholar 

  137. P. Zhou, Z. Li, Y. Chau, Synthesis, characterization, and in vivo evaluation of poly(ethylene oxide-co-glycidol)-platinate conjugate. Eur. J. Pharm. Sci. 41(2010), 464–472 (2010)

    Article  CAS  Google Scholar 

  138. M.T. Johnson, E.W. Neuse, C.E.J. van Rensburg, E. Kreft, Cell growth-inhibiting properties of selected carrier-bound, monoamine-coordinated platinum(II) compounds. J. Inorg. Organomet. Polym. 13, 55–67 (2003)

    Article  CAS  Google Scholar 

  139. J. Bariyanga, M.T. Johnson, E.M. Mmutlane, E.W. Neuse, A water-soluble polyamide containing cis-dicarboxylato-chelated platinum(II). J. Inorg. Organomet. Polym Mater. 15, 335–340 (2005)

    Article  CAS  Google Scholar 

  140. G. Caldwell, E.W. Neuse, C.E.J. van Rensburg, Cytotoxicity of selected water-soluble polymer-cisdiaminedichloroplatinum(II) conjugates against the human HeLa cancer cell line. J. Inorg. Organomet. Polym. 7, 217–231 (1997)

    Article  CAS  Google Scholar 

  141. G. Caldwell, E.W. Neuse, C.E.J. van Rensburg, Cytotoxic activity of two polyaspartamide-based monoamineplatinum(II) conjugates against the HeLa cancer cell line. Appl. Organomet. Chem. 13, 189–194 (1999)

    Article  CAS  Google Scholar 

  142. M.T. Johnson, L.L. Komane, D.D. N’Da, E.W. Neuse, Polymeric drug carriers functionalized with pairwise arranged hydroxyl and/or carboxyl groups for platinum chelation. J. Appl. Polym. Sci. 96, 10–19 (2005)

    Article  CAS  Google Scholar 

  143. E.W. Neuse, Carrier-bound platinum and ironcompounds with carcinostatic properties. Polym. Adv. Technol. 9, 786–793 (1998)

    Article  CAS  Google Scholar 

  144. E.W. Neuse, Platinum coordination compounds in cancer research and chemotherapy. S. Afr. J. Sci. 95, 509–516 (1999)

    CAS  Google Scholar 

  145. E.W. Neuse, G. Caldwell, Cis-diaminedichloroplatinum(II) complexes reversibly linked into the main chain of water-soluble polyamides. J. Inorg. Organomet. Polym. 7, 163–181 (1997)

    Article  CAS  Google Scholar 

  146. E.W. Neuse, G. Caldwell, A.G. Perlwitz, Carrier polymers for cisplatin-type anticancer drug models. Polym. Adv. Technol. 7, 867–872 (1996)

    Article  CAS  Google Scholar 

  147. E.W. Neuse, N. Mphephu, H.M. Netshifhefhe, M.T. Johnson, Synthesis and preliminary in vitro evaluation of polymeric dicarboxylato- and dihydroxylatoplatinum(II) chelates as antiproliferative agents. Polym. Adv. Technol. 13, 884–895 (2002)

    Article  CAS  Google Scholar 

  148. B. Schechter, G. Caldwell, M.G. Meirim, E.W. Neuse, Preliminary toxicological studies of selected water-soluble polymer-platinum conjugates. Appl. Organomet. Chem. 14, 701–708 (2000)

    Article  CAS  Google Scholar 

  149. W.C. Shen, K. Beloussow, M.G. Meirim, E.W. Neuse, G. Caldwell, Antiproliferative activity of polymer-bound, monoamine-coordinated platinum complexes against LNCaP human metastatic prostate adenocarcinoma cells. J. Inorg. Organomet. Polym. 10, 51–60 (2000)

    Article  CAS  Google Scholar 

  150. T. Smit, E.W. Neuse, P. Becker, R. Anderson, C.E.J. van Rensburg, Comparison of the effects of cisplatin and a novel platinum polymer conjugate on the production of reactive oxygen species by human neutrophils in vitro. Drug Dev. Res. 66, 204–209 (2005)

    Article  CAS  Google Scholar 

  151. T. Smit, J.R. Snyman, E.W. Neuse, L. Bohm, C.E.J. van Rensburg, Evaluation of cisplatin and a novel platinum polymer conjugate for drug toxicity and drug distribution in mice. Anticancer Drugs 16, 501–506 (2005)

    Article  CAS  Google Scholar 

  152. X. Lin, Q. Zhang, J.R. Rice, D.R. Stewart, D.P. Nowotnik, S.B. Howell, Improved targeting of platinum chemotherapeutics: the antitumour activity of the HPMA copolymer platinum agent AP5280 in murine tumour models. Eur. J. Cancer 40, 291–297 (2004)

    Article  CAS  Google Scholar 

  153. J.M. Rademaker-Lakhai, C. Terret, S.B. Howell, C.M. Baud, R.F. de Boer, D. Pluim, J.H. Beijnen, J.H.M. Schellens, J.P. Droz, A phase I andpharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res. 10, 3386–3395 (2004)

    Article  CAS  Google Scholar 

  154. S.C. van der Schoot, B. Nuijen, P. Sood, K.B. Thurmond, D.R. Stewart, J.R. Rice, J.H. Beijnen, Pharmaceutical development, quality control, stability and compatibility of a parenteral lyophilized formulation of the investigational polymer-conjugated platinum antineoplastic agent AP534. Pharmazie 61, 835–844 (2006)

    Google Scholar 

  155. M. Campone, J.M. Rademaker-Lakhai, J. Bennouna, S.B. Howell, D.P. Nowotnik, J.H. Beijnen, J.H.M. Schellens, Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemother. Pharmacol. 60, 523–533 (2007)

    Article  CAS  Google Scholar 

  156. K.J. Haxton, H.M. Burt, Polymeric drug delivery of platinum-based anticancer agents. J. Pharm. Sci. 98(2009), 2299–2316 (2009)

    Article  CAS  Google Scholar 

  157. E. Gianasi, M. Wasil, E.G. Evagorou, A. Keddle, G. Wilson, R. Duncan, HPMA copolymer platinates as novel antitumour agents: in vitro properties, pharmacokinetics and antitumour activity in vivo. Eur. J. Cancer 35, 994–1002 (1999)

    Article  CAS  Google Scholar 

  158. A. Furin, A. Guiotto, F. Baccichetti, G. Pasut, C. Deuschel, R. Bertani, F.M. Veronese, Synthesis, characterization and preliminary cytotoxicity assays of poly(ethylene glycol)-malonato-Pt- DACH conjugates. Eur. J. Med. Chem. 38, 739–749 (2003)

    Article  CAS  Google Scholar 

  159. S.B. Lee, S.C. Song, J.I. Jin, Y.S. Sohn, Synthesis and antitumor activity of polyphosphazene/methoxy-poly(ethylene glycol)/(diamine)platinum(II) conjugates. Polym. J. 31, 1247–1252 (1999)

    Article  CAS  Google Scholar 

  160. R. Song, Y.J. Jun, J.I. Kim, C. Jin, Y.S. Sohn, Synthesis, characterization, and tumor selectivity of a polyphosphazene-platinum(II) conjugate. J. Controll. Release 105, 142–150 (2005)

    Article  CAS  Google Scholar 

  161. S.C. Song, S.B. Lee, B.H. Lee, H.W. Ha, K.T. Lee, Y.S. Sohn, Synthesis and antitumor activity of novel thermosensitive platinum(II)-cyclotriphosphazene conjugates. J. Controll. Release 90, 303–311 (2003)

    Article  CAS  Google Scholar 

  162. S.C. Song, Y.S. Sohn, Synthesis and hydrolytic properties of polyphosphazene/(diamine)platinum/saccharide conjugates. J. Controll. Release 55, 161–170 (1998)

    Article  CAS  Google Scholar 

  163. Y.J. Jun, J.I. Kim, M.J. Jun, Y.S. Sohn, Selective tumor targeting by enhanced permeability and retention effect. Synthesis and antitumor activity of polyphosphazene-platinum (II) conjugates. J. Inorg. Biochem. 99, 1593–1601 (2005)

    Article  CAS  Google Scholar 

  164. Y.S. Sohn, H. Baek, Y.H. Cho, Y.A. Lee, O.S. Jung, C.O. Lee, Y.S. Kim, Synthesis and antitumor activity of novel polyphosphazene-(diamine)platinum (II) conjugates. Int. J. Pharm. 153, 79–91 (1997)

    Article  CAS  Google Scholar 

  165. J.-Y. Fang, J.-P. Chen, Y.-L. Leu, J.-W. Hu, The delivery of platinum drugs from thermosensitive hydrogels containing different ratios of chitosan. Drug Deliv. 15, 235–243 (2008)

    Article  CAS  Google Scholar 

  166. G. Tamasi, M. Casolaro, A. Magnani, A. Sega, L. Chiasserini, L. Messori, C. Gabbiani, S.M. Valiahdi, M.A. Jakupec, B.K. Keppler, M.B. Hursthouse, R. Cini, New platinum–oxicam complexes as anti-cancer drugs. Synthesis, characterization, release studies from smart hydrogels, evaluation of reactivity with selected proteins and cytotoxic activity in vitro. J. Inorg. Biochem. 104, 799–814 (2010)

    Article  CAS  Google Scholar 

  167. W. Zhu, Y. Li, L. Liu, Y. Chen, C. Wang, F. Xi, Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-cyclodextrins with a stepwise delivery property. Biomacromolecules 11, 3086–3092 (2010)

    Article  CAS  Google Scholar 

  168. M. Konishia, Y. Tabata, M. Kariya, A. Suzuki, M. Mandai, K. Nanbu, K. Takakura, S. Fujii, In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel. J. Controll. Release 92, 301–313 (2003)

    Article  CAS  Google Scholar 

  169. M. Konishi, Y. Tabata, M. Kariya, H. Hosseinkhani, A. Suzuki, K. Fukuhara, M. Mandai, K. Takakura, S. Fujii, In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J. Controll. Release 103, 7–19 (2005)

    Article  CAS  Google Scholar 

  170. J.-H. Kim, Y.-S. Kim, K. Park, S. Lee, H.Y. Nam, K.H. Min, H.G. Jo, J.H. Park, K. Choi, S.Y. Jeong, R.-W. Park, I.S. Kim, K. Kim, I. Chan, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Controll. Release 127, 41–49 (2008)

    Article  CAS  Google Scholar 

  171. C. Mario, D.B. Barbara, M. Emilia, Hydrogel containing l-valine residues as a platform for cisplatin chemotherapy. Colloids Surf., B 88, 389–395 (2011)

    Article  CAS  Google Scholar 

  172. A. Houlton, R.M.G. Roberts, J. Silver, J. Organomet. Chem. 418, 107–112 (1991)

    Article  CAS  Google Scholar 

  173. D. Osella, M. Ferrali, P. Zanello, F. Laschi, M. Fontani, C. Nervi, G. Cavigiolio, Inorg. Chim. Acta 306, 42–48 (2000)

    Article  CAS  Google Scholar 

  174. G. Caldwell, M.G. Meirim, E.W. Neuse, C. E. J.van Rensburg. Appl. Organomet. Chem. 12, 793–799 (1998)

    Article  CAS  Google Scholar 

  175. E.W. Neuse, Polym. Adv. Technol. 9, 786–793 (1998)

    Article  CAS  Google Scholar 

  176. E.W. Neuse, Macromol. Symp. 172, 127–138 (2001)

    Article  CAS  Google Scholar 

  177. M.T. Johnson, E. Kreft, D.D. N’Da, E.W. Neuse, C.E.J. van Rensburg, J. Inorg. Organomet. Polym. 13, 255–267 (2003)

    Article  CAS  Google Scholar 

  178. B.D. Nkazi, E.W. Neuse, E.R. Sadiku, B.A. Aderibigbe, Synthesis, characterization and kinetic release profile of iron containing polymeric co-conjugates with antiproliferative activity. J. Inorg. Organomet. Polym Mater. 24, 302–314 (2014)

    Article  CAS  Google Scholar 

  179. B.D. Nkazi, E.W. Neuse, E.R. Sadiku, B.A. Aderibigbe, Synthesis, characterization, kinetic release study and evaluation of hydrazone linker in ferrocene conjugates at different pH values. J. Drug Deliv. Sci. Technol. 23, 537–545 (2013)

    Article  CAS  Google Scholar 

  180. I.A. Mufula, B.A. Aderibigbe, E.W. Neuse, H.E. Mukaya, Macromolecular co-conjugates of methotrexate and ferrocene in the chemotherapy of cancer. J. Inorg. Organomet. Polym Mater. 22, 423–428 (2012)

    Article  CAS  Google Scholar 

  181. A.I. Mufula, E.W. Neuse, Macromolecular carriers for methotrexate and ferrocene in cancer chemotherapy. J. Inorg. Organomet. Polym Mater. 21, 511–526 (2011)

    Article  CAS  Google Scholar 

  182. H. Wei, C.-Y. Quan, C. Chang, X.-Z. Zhang, R.-X. Zhuo, J. Phys. Chem. B 114, 5309–5314 (2010)

    Article  CAS  Google Scholar 

  183. N. Katsaros, A. Anagnostopoulou, Rhodium and its compounds as potential agents in cancer treatment. Crit. Rev. Oncol. Hematol. 42, 297–308 (2002)

    Article  CAS  Google Scholar 

  184. K.S. McCully, M.P. Vezeridis, Antineoplastic activity of a rhodium trichloride complex of oxalyl homocysteine thiolactone. Cancer Invest. 5, 25–30 (1987)

    Article  CAS  Google Scholar 

  185. R. Payne, P. Govender, B. Therrien, C.M. Clavel, P.J. Dyson, G.S. Smith, Neutral and cationic multinuclear half-sandwich rhodium and iridiumcomplexes coordinated to poly(propyleneimine) dendritic scaffolds: synthesis and cytotoxicity. J. Organomet. Chem. 729, 20–27 (2013)

    Article  CAS  Google Scholar 

  186. L.C. Sudding, R. Payne, P. Govender, F. Edafe, C.M. Clavel, P.J. Dyson, B. Therrien, G.S. Smith, Evaluation of the in vitro anticancer activity of cyclometalated half-sandwich rhodium and iridium complexes coordinated to naphthaldimine-based poly(propyleneimine) dendritic scaffolds. J. Organomet. Chem. 774, 79–85 (2014)

    Article  CAS  Google Scholar 

  187. I. Ott, B. Kircher, R. Dembinski, R. Gust, Alkyne hexacarbonyl dicobalt complexes in medicinal chemistry and drug development. Expert Opin. Ther. Pat. 18, 327–337 (2008)

    Article  CAS  Google Scholar 

  188. I. Ott, K. Schmidt, B. Kircher, P. Schumacher, T. Wiglenda, R. Gust, Antitumor-active cobalt-alkyne complexes derived from acetylsalicylic acid: studies on the mode of drug action. J. Med. Chem. 48, 622–629 (2005)

    Article  CAS  Google Scholar 

  189. C.D. Sergeant, I. Ott, A. Sniady, S. Meneni, R. Gust, A.L. Rheingold, R. Dembinski, Metallo-nucleosides: synthesis and biological evaluation of hexacarbonyl dicobalt 5-alkynyl-2′-deoxyuridines. Org. Biomol. Chem. 6, 73–80 (2008)

    Article  CAS  Google Scholar 

  190. A.B. Withey, G. Chen, T.L. Nguyen, M.H. Stenzel, Macromolecular cobalt carbonyl complexes encapsulated in a click-cross-linked micelle structure as a nanoparticle to deliver cobalt pharmaceuticals. Biomacromolecules 10, 3215–3226 (2009)

    Article  CAS  Google Scholar 

  191. R.S. Kumar, S. Arunachalam, V.S. Periasamy, C.P. Preethy, A. Riyasdeen, M.A. Akbarsha, Synthesis, DNA binding and antitumor activities of some novel polymer–cobalt(III) complexes containing 1,10-phenanthroline ligand. Polyhedron 27, 1111–1120 (2008)

    Article  CAS  Google Scholar 

  192. G. Vignesh, R. Senthilkumar, P. Paul, V.S. Periasamy, M.A. Akbarsha, S. Arunachalam, Protein binding and biological evaluation of a polymer-anchored cobalt(III) complex containing a 2,2′-bipyridine ligand. RSC Adv. 4, 57483–57492 (2014)

    Article  CAS  Google Scholar 

  193. E. Sabbioni, G. Pozzi, S. Devos, A. Pintar, L. Casella, M. Fischbach, The intensity of vanadium(V)-induced cytotoxicity and morphological transformation in BALB/3T3 cells is dependent on glutathione-mediated bioreduction to vanadium(IV). Carcinogenesis 14, 2565–2568 (1993)

    Article  CAS  Google Scholar 

  194. A. Stem, X. Yin, S.S. Tsang, A. Davison, J. Moon, Vanadium as a modulator of cellular regulatory cascades and oncogene expression. Biochem. Cell Biol. 71, 103–112 (1993)

    Article  Google Scholar 

  195. A. Chakraborty, R. Ghosh, K. Roy, S. Ghosh, P. Chowdhury, M. Chatterjee, Vanadium: a modifier of drug-metabolizing enzyme patterns and its critical role in cellular proliferation in transplantable murine lymphoma. Oncology 52, 310–314 (1995)

    Article  CAS  Google Scholar 

  196. H.J. Thompson, N.D. Chasteen, L.D. Meekr, Dietary vanadyl(IV) sulphate inhibits chemically-induced mammary carcinogenesis. Carcinogenesis 5, 849–851 (1984)

    Article  CAS  Google Scholar 

  197. A. Bishayee, M. Chatterjee, Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted by phenobarbital. Br. J. Cancer 71, 1214–1220 (1995)

    Article  CAS  Google Scholar 

  198. S. Sardar, A. Mondal, M. Chatterjee, Protective role of vanadium in the survival of hosts during the growth of a transplantable murine lymphoma and its profound effects on the rates and patterns of biotransformation. Neoplasma 40, 27–30 (1993)

    CAS  Google Scholar 

  199. T.F. Cruz, A. Morgan, W. Min, In vitro and in vivo antineoplastic effects of orthovanadate. Mol. Cell Biochem. 153, 161–166 (1995)

    Article  CAS  Google Scholar 

  200. A.M. Evangelou, Vanadium in cancer treatment. Crit. Rev. Oncol./Hematol. 42, 249–265 (2002)

    Article  Google Scholar 

  201. J.K. Jackson, W. Min, T.F. Cruz, S. Cindric, L. Arsenault, D.D. Von Hoff, D. Degan, W.L. Hunter, H.M. Burt, A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice. Br. J. Cancer 75, 1014–1020 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Aderibigbe.

Additional information

This article is written in memory of late Prof. E.W. Neuse (em) who dedicated his research towards the design and characterization of polymer-drug conjugates containing metal based anticancer drugs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aderibigbe, B.A. Polymeric Prodrugs Containing Metal-Based Anticancer Drugs. J Inorg Organomet Polym 25, 339–353 (2015). https://doi.org/10.1007/s10904-015-0220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0220-7

Keywords

Navigation