Skip to main content

Advertisement

Log in

Improving the Optical, Mechanical and Dielectric Properties of PMMA: Mg1−xCuxO Based Polymer Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The aim of the presented work is to study the optical, mechanical and dielectric properties of Poly methyl methacrylate (PMMA) filled with Mg1−xCuxO, 0.05 ≤ x ≤ 0.2 synthesized in the form of casted films. Structures of the prepared powder and films were examined by X-ray diffraction (XRD), where the recorded pattern reveals the existence of cubic phase structure for Mg1−xCuxO powder and films. Fourier transform infrared (FTIR) spectra confirmed that Mg0.9Cu0.1O nanoparticles were successfully incorporated into the PMMA. The morphology of the nanocomposite films was studied using field emission scanning electron microscopy (FESEM). Well dispersion of Mg1−xCuxO nanoparticles in the PMMA matrix and formation of some cluster were observed. The optical properties of the prepared nanocomposite films were performed by means of UV–Vis technique. The absorption coefficient, optical energy band gap, extinction coefficient and the refractive index of the casted films were calculated. The results showed a decrease in optical energy band gap, and an increase of absorption coefficient, extinction coefficient and refractive index with increasing the percentage ratio of Cu in PMMA matrix. There is an enhancement in mechanical properties. The microhardness increases as the Cu content increases up to x = 0.15 wt% after that it decreases. The tensile strength was measured and raised from 23.87 to 43.30 MPa with increasing the Cu content up to x = 0.10 after that it decreases. Finally, the permittivity (ε′) and dielectric loss (ε″) were decreased as the frequency increased but (ε′) became nearly constant at higher frequency range. Moreover, ε′ and tan δ increased as the Cu content increases. Also the AC conductivity was measured to study the conduction mechanism in the presented nanocomposite films. The calculated dc conductivity was increased as the Cu content in PMMA matrix increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G.N. Smith, J.E. Hallett, P. Joesph, S.T. McNally, T. Zhang, F.D. Blum, J. Eastoe, Polym. J. 49, 711–719 (2017)

    Article  CAS  Google Scholar 

  2. M.H. Naveen, N.G. Gurudatt, Y.B. Shim, Appl. Mater. 9, 419–433 (2017)

    Google Scholar 

  3. C.M. Wang, C.Y. Chen, W.S. Liao, Chim. Acta. 963, 93–98 (2017)

    Article  CAS  Google Scholar 

  4. L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, S. Wang, Compos. B. 122, 145–155 (2017)

    Article  CAS  Google Scholar 

  5. C. Zhang, T.F. Garrison, S.A. Madbouly, M.R. Kessler, Prog. Polym. Sci. 71, 91–143 (2017)

    Article  CAS  Google Scholar 

  6. S. Devikala, P. Kamaraj, M. Arthanareeswari, Mater. Today: Proc. 5, 8678–8682 (2018)

    Google Scholar 

  7. T. Wang, G. Chen et al., Prog. Org. Coat. 59, 101 (2007)

    Article  CAS  Google Scholar 

  8. S.V. Kuppua, A.R. Jeyaramanb, P.K. Guruviaha, S. Thambusamya, Curr. Appl. Phys. 18, 619–625 (2018)

    Article  Google Scholar 

  9. C.H. Sengottaiyan, R. Jayavel, P. Bairi, R.G. Shrestha et al., Bull. Chem. Soc. 90, 955 (2017)

    Article  CAS  Google Scholar 

  10. V.P. Anju, S.K. Narayanankutty, Polymer 119, 224–237 (2017)

    Article  CAS  Google Scholar 

  11. N. Hoang, T.D. Dao, H.M. Jeong, Macro Mol. Chem. Phys. 216(7), 770–782 (2015)

    Article  Google Scholar 

  12. P. Maji, R. Bilash Choudhary, M. Majhi, J. Non-Cryst. Solids 456, 40–48 (2017)

    Article  CAS  Google Scholar 

  13. R. Kaur Kawaljeet, S. Samra, Phys. B 538, 29–34 (2018)

    Article  Google Scholar 

  14. V.L. Schade, T.S. Roukis, J. Foot Ankle Surg. 49, 55 (2010)

    Article  Google Scholar 

  15. S.P. Mohanty, M.N. Kumar, N.S. Murthy, J. Orthop. Surg 11, 73 (2003)

    Article  CAS  Google Scholar 

  16. N.L. Pleshko, A.L. Boskey, R. Mendelsohn, J. Histochem. Cytochem. 40, 1413 (1992)

    Article  CAS  Google Scholar 

  17. A. Stevens, J. Germain, Resin embedding media, in The Theory and Practice of Histological Techniques, 3rd edn., ed. by J.D. Bancroft, A. Stevens (Churchill Livingstone, New York, 1990)

    Google Scholar 

  18. P. Maji, R. Bilash, Choudhary, Mater. Chem. Phys. 193, 391–400 (2017)

    Article  CAS  Google Scholar 

  19. P. Schexnailder, G. Schmidt, Colloidal Polym. Sci. A. 287, 1 (2009)

    Article  CAS  Google Scholar 

  20. M. Majhi, R. Choudhary, M. Majhi, J. Non-Cryst. Solids 456, 40–48 (2017)

    Article  Google Scholar 

  21. O. Gh. Sh.B. Abdullah, M.A. Aziz, Rasheed, J. Mater. Sci.: Mater. Electron. 28, 4513–4520 (2017)

    Google Scholar 

  22. C. Ristoscu, I.N. Mihailescu, Lasers—Appl. Sci. Ind. 3, 53 (2011)

    Google Scholar 

  23. O.A. Hamadi, J. Mater. Des. Appl. 222, 65 (2008)

    CAS  Google Scholar 

  24. O.A. Hamadi, Iraqi J. Appl. Phys. 4(3), 34 (2008)

    Google Scholar 

  25. A.A.K. Hadi, O.A. Hamadi, Iraqi J. Appl. Phys. Lett. 1(2), 23 (2008)

    Google Scholar 

  26. N. Tamaekong, C. Liewhiran, S. Phanichphant, J. Nanomater. 2014, 1 (2014)

    Article  Google Scholar 

  27. O.A. Hammadi, Photonic Sens. 5(2), 152 (2015)

    Article  CAS  Google Scholar 

  28. O.A. Hammadi, N.E. Naji, Opt. Quant. Electron. 48(8), 375 (2016)

    Article  Google Scholar 

  29. I.E. Wachs, G. Deo, J.M. Jehng, D.S. Kim, H. Hu, Heterogen. Hydrocarbon Oxid. 638, 292 (1996)

    Article  CAS  Google Scholar 

  30. O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, Opt. Quantum Electron. 47(12), 3805 (2015)

    Article  CAS  Google Scholar 

  31. O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nano Eng. Nanosyst. 230(1), 32 (2016)

    CAS  Google Scholar 

  32. S. Wang, F. Tristan, D. Minami, T. Fujimori, R. Cruz-Silva et al., Carbon 76, 220 (2014)

    Article  CAS  Google Scholar 

  33. T. Fuad, Ibrahim, Iraqi J. Appl. Phys. 13(3), 1 (2017)

    Google Scholar 

  34. J. Kulkarni, R. Ravishankar, H. Nagabhushana, K.S. Anantharaju, R.B. Basavaraj, M. Sangeeta, H.P. Nagaswarupae, L. Renuka, Mater. Today: Proc. 4, 11756–11763 (2017)

    Google Scholar 

  35. H. Li, G.M. Cai, B. Song, Mater. Chem. Phys. 182, 445 (2016)

    Article  CAS  Google Scholar 

  36. D.W. Chae, B.C. Kim, Polym. Adv. Technol. 16, 846 (2005)

    Article  CAS  Google Scholar 

  37. I. Gill, Chem. Mater. 13, 3404 (2001)

    Article  CAS  Google Scholar 

  38. L. Shen, Q. Du, H. Wang, W. Zhong, Y. Yang, Polym. Int. 53, 1153 (2004)

    Article  CAS  Google Scholar 

  39. S.M. Safiullah, K.A. Wasi, K.A. Basha, Polymer 66, 29 (2015)

    Article  Google Scholar 

  40. M.I. Mohammed, J. Mol. Struct. 1169, 9–17 (2018)

    Article  CAS  Google Scholar 

  41. K. Cheng, Y.P. He, Y.M. Miao, B.S. Zou, Y.G. Wang, T.H. Wang et al., J Phys. Chem B. 110, 7259 (2006)

    Article  CAS  Google Scholar 

  42. D.F. Swinehart, The Beer-Lambert Law. J. Chem. Educ. 39(7), 333 (1962)

    Article  CAS  Google Scholar 

  43. K. Samanta, P. Bhattacharya, R. Katiyar, J. Appl. Phys. 105, 113929 (2009)

    Article  Google Scholar 

  44. C. Kan, Ch Wang, J. Zhu, H. Li, J. Solid State Chem. 183, 858–865 (2010)

    Article  CAS  Google Scholar 

  45. N.F. Mott, E.A. Davis, Electron Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  46. J. Tauc, A. Menth, J. Non. Cryst. Solids 569, 8 (1972)

    Google Scholar 

  47. N. Chopra, A. Mansingh, G.K. Chadha, J. Non. Cryst. Solids 194, 126 (1990)

    Google Scholar 

  48. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. Mater. Electron. 26(7), 5303–5309 (2015)

    Article  CAS  Google Scholar 

  49. S.B. Aziz, J. Electron. Mater. 41(1), 736–745 (2016)

    Article  Google Scholar 

  50. S. Mahendia, A.K. Tomara, S. Kumar, J. Alloys Compounds 508, 406 (2011)

    Article  Google Scholar 

  51. L. Bi, A.R. Taussig, H.-S. Kim et al., Phys. Rev. B 10(78), 104106 (2008)

    Article  Google Scholar 

  52. R.H. French, J.M. Rodr´ıguez-Parada, M.K. Yang, R.A. Derryberry, N.T. Pfeiffenberger, Solar Energy Mater. Solar Cells 8, 2077 (2011)

    Article  Google Scholar 

  53. M.K. Yang, R.H. French, E.W. Tokarsky, J. Micro Nanolithogr. MEMS MOEMS 7(3), 1 (2008)

    Article  Google Scholar 

  54. H.P. Fu, R.Y. Hong, Y.J. Zhang, H.Z. Li, B. Xu, Y. Zhengand, D.G. Wei, Polym. Adv. Technol. 20, 84 (2009)

    Article  CAS  Google Scholar 

  55. P. Maji, R.B. Choudhary, M. Majhi, Optik 127(11), 4848–4853 (2016)

    Article  CAS  Google Scholar 

  56. M. Majhi, R.B. Choudhary, P. Maji, Bull. Mater. Sci. 38(5), 417–425 (2015)

    Article  Google Scholar 

  57. S.B. Aziz, Bull. Mater. Sci. 38(6), 1597–1602 (2015)

    Article  CAS  Google Scholar 

  58. S.B. Aziz, Z.H.Z. Abidin, Mat. Chem. Phys. 144(3), 280–286 (2014)

    Article  CAS  Google Scholar 

  59. H.P. De Oliveira, M.V.B. dos Santos, C.G. dos Santos, C.P. de Melo, Mater. Charact. 50, 223 (2003)

    Article  CAS  Google Scholar 

  60. F. Ali, M.L. Hassan, A.A. Ward, E.M. El-Giar, Polym. Compos. 38, 893 (2017)

    Article  CAS  Google Scholar 

  61. S. Miyauchiand, E. Togashi, J. Appl. Polym. Sci. 30, 2743 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abomostafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abomostafa, H., Gad, S.A. & Khalaf, A.I. Improving the Optical, Mechanical and Dielectric Properties of PMMA: Mg1−xCuxO Based Polymer Nanocomposites. J Inorg Organomet Polym 28, 2759–2769 (2018). https://doi.org/10.1007/s10904-018-0916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0916-6

Keywords

Navigation