Skip to main content
Log in

Structural and Electrical Characterization of Ba/ZnO Nanoparticles Fabricated by Co-precipitation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Ba-doped ZnO nanostructures (0.8–4 mmol) were successfully fabricated by the co-precipitation method. X-ray diffraction analysis indicated that all samples exhibited a typical hexagonal wurtzite ZnO structure with the emergence of BaO phase. Moreover, the incorporation of Ba resulted in an increase of crystallite size and lattice parameter while microstrain decreases. The broadening of the Zn–O vibrational band and the redshift in Raman vibrational modes provided clear evidence of the incorporation of Ba within ZnO host lattice. Furthermore, Ba doping prompted an increase of the dielectric constant and ac conductivity (σac). Additionally, the subsequent decrease in tangent loss with increasing the applied field frequency was associated with the hopping frequency of electron that enhances the charge carriers’ mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Matsumura, R.P. Camata, Pulsed laser deposition and photoluminescence measurements of ZnO thin films on flexible polyimide substrates. Thin Solid Films 476(2), 317–321 (2005)

    Article  CAS  Google Scholar 

  2. Y. Heo et al., ZnO nanowire growth and devices. Mater. Sci. Eng.: R: Rep. 47(1–2), 1–47 (2004)

    Article  CAS  Google Scholar 

  3. J.-H. Lee, K.-H. Ko, B.-O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J. Cryst. Growth 247(1–2), 119–125 (2003)

    Article  CAS  Google Scholar 

  4. S. Henley, M. Ashfold, D. Cherns, The growth of transparent conducting ZnO films by pulsed laser ablation. Surf. Coat. Technol. 177, 271–276 (2004)

    Article  CAS  Google Scholar 

  5. K. Karthik, S.K. Pandian, N.V. Jaya, Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol–gel method. Appl. Surf. Sci. 256(22), 6829–6833 (2010)

    Article  CAS  Google Scholar 

  6. J. Lu et al., Conductivity enhancement and semiconductor–metal transition in Ti-doped ZnO films. Opt. Mater. 29(11), 1548–1552 (2007)

    Article  CAS  Google Scholar 

  7. A. Modwi et al., Fast and high efficiency adsorption of Pb (II) ions by Cu/ZnO composite. Mater. Lett. 195, 41–44 (2017)

    Article  CAS  Google Scholar 

  8. A. Modwi et al., Silver decorated Cu/ZnO photocomposite: efficient green degradation of malachite. J. Mater. Sci.: Mater. Electron. 30, 3629–3638 (2019)

    CAS  Google Scholar 

  9. Y. Yang et al., Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. J. Cryst. Growth 263(1–4), 447–453 (2004)

    Article  CAS  Google Scholar 

  10. D. Li, H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. J. Photochem. Photobiol. A: Chem. 155(1–3), 171–178 (2003)

    CAS  Google Scholar 

  11. C. Cheng et al., Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism. Mater. Lett. 62(10–11), 1617–1620 (2008)

    Article  CAS  Google Scholar 

  12. L. Khezami et al., (x)ZnO(1−x)Fe2O3 nanocrystallines for the removal of cadmium (II) and nickel (II) from water: kinetic and adsorption studies. J. Water Supply: Res. Technol. AQUA 66(6), 381–391 (2017)

    Article  Google Scholar 

  13. K. Raja, P. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 183–188 (2014)

    Article  CAS  Google Scholar 

  14. S.D. Bukkitgar et al., Electro-oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modified glassy carbon electrode. J. Electroanal. Chem. 762, 37–42 (2016)

    Article  CAS  Google Scholar 

  15. G. Srinet, R. Kumar, V. Sajal, High Tc ferroelectricity in Ba-doped ZnO nanoparticles. Mater. Lett. 126, 274–277 (2014)

    Article  CAS  Google Scholar 

  16. A.S.H. Hameed et al., Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J. Mater. Chem. B 1(43), 5950–5962 (2013)

    Article  CAS  Google Scholar 

  17. S. Bakand, A. Hayes, F. Dechsakulthorn, Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal. Toxicol. 24(2), 125–135 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. P. Nasehi et al., Preparation and characterization of a novel Mn-Fe2O4 nanoparticle loaded on activated carbon adsorbent for kinetic, thermodynamic and isotherm surveys of aluminum ion adsorption. Sep. Sci. Technol. (2019). https://doi.org/10.1080/01496395.2019.1585456

    Article  Google Scholar 

  19. S. Yari et al., Adsorption of Pb (II) and Cu (II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Saf. Environ. Prot. 94, 159–171 (2015)

    Article  CAS  Google Scholar 

  20. S. Jesudoss et al., Effects of Ba doping on structural, morphological, optical, and photocatalytic properties of self-assembled ZnO nanospheres. Clean Technol. Environ. Policy 18(3), 729–741 (2016)

    Article  CAS  Google Scholar 

  21. K. Taha et al., Simplistic one pot synthesis of ZnO via chelating with carboxylic acids. Dig. J. Nanomater. Biostruct. 13(4), 1213–1222 (2018)

    Google Scholar 

  22. A. Modwi et al., Structural and optical characteristic of chalcone doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 29(4), 2791–2796 (2018)

    CAS  Google Scholar 

  23. V. Mote, Y. Purushotham, B. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  Google Scholar 

  24. K. Karthika, K. Ravichandran, Tuning the microstructural and magnetic properties of ZnO nanopowders through the simultaneous doping of Mn and Ni for biomedical applications. J. Mater. Sci. Technol. 31(11), 1111–1117 (2015)

    Article  CAS  Google Scholar 

  25. S. Snega et al., Simultaneous enhancement of transparent and antibacterial properties of ZnO films by suitable F doping. J. Mater. Sci. Technol. 31(7), 759–765 (2015)

    Article  CAS  Google Scholar 

  26. O. Lupan et al., Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256(6), 1895–1907 (2010)

    Article  CAS  Google Scholar 

  27. A. Modwi et al., Structural, surface area and FTIR characterization of Zn0.95−xCu0.05Fe0.0xO nanocomposites. J. Mater. Sci.: Mater. Electron. 29(3), 2184–2192 (2018)

    CAS  Google Scholar 

  28. S. Yakout, Pure and Gd-based Li, Na, Mn or Fe codoped ZnO nanoparticles: insights into the magnetic and photocatalytic properties. Solid State Sci. 83, 207–217 (2018)

    Article  CAS  Google Scholar 

  29. M. Ashokkumar, S. Muthukumaran, Zn0.96−xCu0.04FexO (0 ≤ x ≤ 0.04) alloys–optical and structural studies. Superlatt. Microstruct. 69, 53–64 (2014)

    Article  CAS  Google Scholar 

  30. C. Belkhaoui, N. Mzabi, H. Smaoui, Investigations on structural, optical and dielectric properties of Mn doped ZnO nanoparticles synthesized by co-precipitation method. Mater. Res. Bull. 111, 70–79 (2019)

    Article  CAS  Google Scholar 

  31. C. Mrabet et al., Some physical investigations on hexagonal-shaped nanorods of lanthanum-doped ZnO. J. Alloy. Compd. 648, 826–837 (2015)

    Article  CAS  Google Scholar 

  32. A.K. Zak et al., X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  CAS  Google Scholar 

  33. C. Barrett, T. Massalski, Structure of Metals, Crystallographic Methods, Principles and Data, International Series on Materials Science and Technology (Pergamon, New York, 1980)

    Google Scholar 

  34. K.K. Taha et al., Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water. Nanotechnol. Environ. Eng. 4(1), 10 (2019)

    Article  CAS  Google Scholar 

  35. C.Y. Panicker et al., FT-IR, FT-Raman and SERS spectra of pyridine-3-sulfonic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64(3), 744–747 (2006)

    Article  CAS  Google Scholar 

  36. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)

    Article  CAS  Google Scholar 

  37. N. Nickel, K. Fleischer, Hydrogen local vibrational modes in zinc oxide. Phys. Rev. Lett. 90(19), 197402 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. R.S. Alam et al., Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)

    Article  CAS  Google Scholar 

  39. J. Calleja, M. Cardona, Resonant raman scattering in ZnO. Phys. Rev. B 16(8), 3753 (1977)

    Article  CAS  Google Scholar 

  40. G. Wu et al., Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process. Solid State Commun. 134(7), 485–489 (2005)

    Article  CAS  Google Scholar 

  41. Y. Chen et al., Optical properties of ZnO and ZnO: in nanorods assembled by sol-gel method. J. Chem. Phys. 123(13), 134701 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. B. Zhang et al., Ni-doped zinc oxide nanocombs and phonon spectra properties. Phys. Lett. A 372(13), 2300–2303 (2008)

    Article  CAS  Google Scholar 

  43. T.C. Damen, S. Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142(2), 570 (1966)

    Article  CAS  Google Scholar 

  44. A. Jaramillo et al., Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman spectroscopy. Ceram. Int. 43(15), 11838–11847 (2017)

    Article  CAS  Google Scholar 

  45. A. Umar, Y. Hahn, Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation. Appl. Phys. Lett. 88(17), 173120 (2006)

    Article  CAS  Google Scholar 

  46. F. Wang et al., Synthesis and properties of Cd-doped ZnO nanotubes. Physica E 41(5), 879–882 (2009)

    Article  CAS  Google Scholar 

  47. J. Wang et al., ZnO nanostructured microspheres and grown structures by thermal treatment. Bull. Mater. Sci. 31(4), 597–601 (2008)

    Article  CAS  Google Scholar 

  48. H.K. Yadav et al., Structural studies and Raman spectroscopy of forbidden zone boundary phonons in Ni-doped ZnO ceramics. J. Raman Spectrosc. 40(4), 381–386 (2009)

    Article  CAS  Google Scholar 

  49. E. Islam, A. Sakai, A. Onodera, Li-concentration dependence of micro-Raman spectra in ferroelectric-semiconductor Zn1−xLixO. J. Phys. Soc. Jpn. 71(6), 1594–1597 (2002)

    Article  CAS  Google Scholar 

  50. L. Yang et al., In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. J. Appl. Phys. 97(1), 014308 (2005)

    Article  CAS  Google Scholar 

  51. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  52. M.N. Ashiq, M.J. Iqbal, I.H. Gul, Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 323(3–4), 259–263 (2011)

    Article  CAS  Google Scholar 

  53. T. Prodromakis, C. Papavassiliou, Engineering the Maxwell-Wagner polarization effect. Appl. Surf. Sci. 255(15), 6989–6994 (2009)

    Article  CAS  Google Scholar 

  54. R. Zamiri et al., Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40(1), 1635–1639 (2014)

    Article  CAS  Google Scholar 

  55. M. Ashokkumar, S. Muthukumaran, Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J. Lumin. 162, 97–103 (2015)

    Article  CAS  Google Scholar 

  56. M. Ashokkumar, S. Muthukumaran, Effect of Cr-doping on dielectric, electric and magnetic properties of Zn0.96Cu0.04O nanopowders. Powder Technol. 268, 80–85 (2014)

    Article  CAS  Google Scholar 

  57. M.K. Gupta, B. Kumar, Enhanced ferroelectric, dielectric and optical behavior in Li-doped ZnO nanorods. J. Alloy. Compd. 509(23), L208–L212 (2011)

    Article  CAS  Google Scholar 

  58. M. Ashokkumar, S. Muthukumaran, Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. J. Magn. Magn. Mater. 374, 61–66 (2015)

    Article  CAS  Google Scholar 

  59. F. Alam et al., Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Funct. Mater. Lett. 5(03), 1250026 (2012)

    Article  CAS  Google Scholar 

  60. W. Fan et al., Materials science and integration bases for fabrication of (BaxSr1−x) TiO3 thin film capacitors with layered Cu-based electrodes. J. Appl. Phys. 94(9), 6192–6200 (2003)

    Article  CAS  Google Scholar 

  61. M.M. Hassan et al., Structural and frequency dependent dielectric properties of Fe3+ doped ZnO nanoparticles. Mater. Res. Bull. 47(12), 3952–3958 (2012)

    Article  CAS  Google Scholar 

  62. R. Zamiri et al., Structural and dielectric properties of Al-doped ZnO nanostructures. Ceram. Int. 40(4), 6031–6036 (2014)

    Article  CAS  Google Scholar 

  63. S. Kurien et al., Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate. Mater. Chem. Phys. 98(2–3), 470–476 (2006)

    Article  CAS  Google Scholar 

  64. P. Sivakumar et al., Structural, thermal, dielectric and magnetic properties of NiFe2O4 nanoleaf. J. Alloy. Compd. 537, 203–207 (2012)

    Article  CAS  Google Scholar 

  65. M.M. Hassan et al., Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng. Chem. 21, 283–291 (2015)

    Article  CAS  Google Scholar 

  66. Y. Liu et al., Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. ACS Nano 4(9), 5373–5381 (2010)

    Article  CAS  PubMed  Google Scholar 

  67. R. Nongjai et al., Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012)

    Article  CAS  Google Scholar 

  68. A. Jonscher, Chelsea Dielectric Press (Google Scholar, London, 1983)

    Google Scholar 

  69. M. El Hiti, AC electrical conductivity of Ni-Mg ferrites. J. Phys. D Appl. Phys. 29(3), 501 (1996)

    Article  Google Scholar 

  70. P.J. Gellings, H. Bouwmeester, Handbook of Solid State Electrochemistry (CRC Press, Boca Raton, 1997)

    Google Scholar 

  71. A. Tabib et al., Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloy. Compd. 622, 687–694 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Modwi.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that could potentially influence or bias the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modwi, A., Taha, K.K., Khezami, L. et al. Structural and Electrical Characterization of Ba/ZnO Nanoparticles Fabricated by Co-precipitation. J Inorg Organomet Polym 30, 2633–2644 (2020). https://doi.org/10.1007/s10904-019-01425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01425-4

Keywords

Navigation