Skip to main content

Advertisement

Log in

Synthesis of rNiCo Nanocomposite - As an Electrode Material for Supercapacitor Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Reduced graphene oxide/nickel cobalt oxide (rNiCo) nanocomposites synthesized via one pot hydrothermal procedure were reported. The X-ray diffraction (XRD) and High Resolution-Transmission Electron Microscopy (HR-TEM) and High Resolution-Scanning Electron Microscopy (HR-SEM) results demonstrates the formation of rNiCo nanocomposites and their morphology. The rNiCo-30 sample exhibits large specific surface area 236.548 m2g− 1 along with highly open mesoporous structure. The electrochemical properties are investigated by employing Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) techniques. The rNiCo-30 sample achieve specific capacitance of 962.96 Fg− 1 at current density 1 Ag− 1, energy density 308.14 WhKg− 1 and excellent cycling stability (93.5%) for 5000 charge-discharge cycles at 3 Ag− 1. The power density for the sample rNiCo-30 at different current densities 1, 2, 3, 4 and 5 Ag− 1 are 0.67, 0.76, 0.83, 0.88 and 0.94 KWKg− 1 respectively. The excellent electrochemical performance of rNiCo-30 electrode attributed to easy diffusion of electrolytes and availability of many electrochemical active sites. Moreover presence of rGO in the nanocomposite structure offered uniform porous structures which enables easy flow of electron transportation. These results suggest that prepared electrodes have a great potential for supercapacitor applications. The synthesized nanocomposites could be used as an electrode material for supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 5(e)
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Samson, S. Bharathi Bernadsha, P. Albin John, D. Paul Winston, J. Divya, M. Abraham, Raj, J. Madhavan, “rGO Sheets/ZnFe2O4 Nanocomposities as an Efficient Electro Catalyst Material for I3–/I Reaction for High Performance DSSCs.“Journal of Inorganic and Organometallic Polymers and Materials (2022):1–7

  2. A. Singh, S.K. Ojha, K. Animesh, Ojha. “Facile synthesis of porous nanostructures of NiCo2O4 grown on rGO sheet for high performance supercapacitors. Synth. Met. 259, 116215 (2020)

    Article  CAS  Google Scholar 

  3. J. Schummer. “From Nano-Convergence to NBIC-Convergence:“The best way to predict the future is to create it”.“ Governing Future Technologies, pp. 57–71. Springer, Dordrecht, 2009

    Chapter  Google Scholar 

  4. D. Van Lam, M. Sohail, J.-H. Kim, H.J. Lee, S.O. Han, J. Shin, D. Kim, H. Kim, and Seung-Mo Lee. “Laser synthesis of MOF-derived Ni@ Carbon for high-performance pseudocapacitors. ACS Appl. Mater. Interfaces 12(35), 39154–39162 (2020)

    Article  PubMed  Google Scholar 

  5. J. Gu, L.S.Y. Zhang, Q. Zhang, X. Li, H. Si, Y. Shi, C. Sun, Yi Gong, and Yihe Zhang. “MOF-derived Ni-doped CoP@ C grown on CNTs for high-performance supercapacitors. Chem. Eng. J. 385, 123454 (2020)

    Article  CAS  Google Scholar 

  6. C.-H. Wang, D.-W. Zhang, S. Liu, Y. Yamauchi, F.-B. Zhang, Yusuf Valentino Kaneti. “Ultrathin nanosheet-assembled nickel-based metal–organic framework microflowers for supercapacitor applications.“ Chem. Commun. 58, 7 (2022): 1009–1012

    Article  CAS  Google Scholar 

  7. A. Allah, J. Enaiet, Y.V. Wang, T. Kaneti, A.A. Li, Farghali, Mohamed Hamdy Khedr, Ashok Kumar Nanjundan et al. “Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers.“ Nano Energy 65 (2019): 103991

  8. M. Isacfranklin, G. Ravi, R. Yuvakkumar, P. Kumar, D. Velauthapillai, B. Saravanakumar, M. Thambidurai, Cuong Dang. “Urchin like NiCo2O4/rGO nanocomposite for high energy asymmetric storage applications.“ Ceram. Int. 46, 10 (2020): 16291–16297

    Article  CAS  Google Scholar 

  9. Y. Luo, H. Zhang, D. Guo, J. Ma, Q. Li, L. Chen, T. Wang, Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors. Electrochim. Acta 132, 332–337 (2014)

    Article  CAS  Google Scholar 

  10. S. Zhang, H. Gao, J. Zhou, F. Jiang, Z. Zhang, Hydrothermal synthesis of reduced graphene oxide-modified NiCo2O4 nanowire arrays with enhanced reactivity for supercapacitors. J. Alloys Compd. 792, 474–480 (2019)

    Article  CAS  Google Scholar 

  11. G. He, L. Wang, H. Chen, X. Sun, X. Wang, “Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material. " Mater. Lett. 98, 164–167 (2013)

    Article  CAS  Google Scholar 

  12. J. Pokharel, A. Gurung, A. Baniya, W. He, K. Chen, R. Pathak, Buddhi Sagar Lamsal, Nabin Ghimire, and Yue Zhou. “MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. " Electrochim. Acta 394, 139058 (2021)

    Article  CAS  Google Scholar 

  13. T. Liu, S. Zhou, X. Yu, C. Mao, Y. Wei, X. Yu, L. Chen, X. Zhao, G. Tian, L. Chen, “Hexadecyl trimethyl ammonium bromide assisted growth of NiCo 2 O 4@ reduced graphene oxide/nickel foam nanoneedle arrays with enhanced performance for supercapacitor electrodes.“ RSC advances 12, no. 7 (2022): 4029–4041

  14. Z. Wei, J. Guo, M. Qu, Z. Guo, H. Zhang, “Honeycombed-like nanosheet array composite NiCo2O4/rGO for efficient methanol electrooxidation and supercapacitors.“. Electrochim. Acta 362, 137145 (2020)

    Article  CAS  Google Scholar 

  15. L. Ma, X. Shen, Hu Zhou, Z. Ji, K. Chen, G. Zhu, “High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites.“. Chem. Eng. J. 262, 980–988 (2015)

    Article  CAS  Google Scholar 

  16. S. Liu, C. An, X. Chang, H. Guo, L. Zang, Y. Wang, H. Yuan, Lifang Jiao. “Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor.“ J. Mater. Sci. 53, 4 (2018): 2658–2668

    Article  CAS  Google Scholar 

  17. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014)

    Article  Google Scholar 

  18. S. Liu, J. Wu, J. Zhou, Guozhao Fang, and Shuquan Liang. “Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as

  19. binder-free electrode for high-performance lithium-ion batteries and supercapacitors.“ Electrochimica Acta 176 (2015): 1–9

  20. X. Wang, Li, X. Wang, F. Xiao, Y.S. Xu, Z. Li, Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim. Acta 111, 937–945 (2013)

    Article  Google Scholar 

  21. Y. Qiu, X. Li, M. Bai, H. Wang, D. Xue, W. Wang, J. Cheng, Pseudocapacitive behaviors of mesoporous nickel–cobalt oxide nanoplate electrodes in different electrolyte systems. New J. Chem. 41(5), 2124–2130 (2017)

    Article  CAS  Google Scholar 

  22. S. Khalid, C. Cao, A. Ahmad, L. Wang, M. Tanveer, I. Aslam, M. Tahir, Faryal Idrees, and Youqi Zhu. “Microwave assisted synthesis of mesoporous NiCo 2 O 4 nanosheets as electrode material for advanced flexible supercapacitors. " Rsc Advances 5(42), 33146–33154 (2015)

    Article  CAS  Google Scholar 

  23. R. Basu, Prabir, S. Mahesh, S.J. Harish, P. Sagayaraj, “One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications.“. Appl. Surf. Sci. 449, 474–484 (2018)

    Article  Google Scholar 

  24. L. Ma, X. Shen, Hu Zhou, Z. Ji, K. Chen, G. Zhu, “High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites.“. Chem. Eng. J. 262, 980–988 (2015)

    Article  CAS  Google Scholar 

  25. J. Shi, X. Zhou, Y. Liu, Q. Su, J. Zhang, G. Du, One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance. Mater. Res. Bull. 65, 204–209 (2015)

    Article  CAS  Google Scholar 

  26. D. Nathan, Muthu Gnana, Theresa, and S. Jacob Melvin Boby. “Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. J. Alloys Compd. 700, 67–74 (2017)

    Article  CAS  Google Scholar 

  27. S.J. Uke, N. Gajanan, A.B. Chaudhari, Bodade, P. Satish, Mardikar. “Morphology dependant electrochemical performance of hydrothermally synthesized NiCo2O4 nanomorphs. Mater. Sci. Energy Technol. 3, 289–298 (2020)

    CAS  Google Scholar 

  28. V. Paranthaman, K. Sundaramoorthy, B. Chandra, S.P. Muthu, P. Alagarsamy, R. Perumalsamy. “Investigation on the performance of reduced graphene oxide as counter electrode in dye sensitized solar cell applications.“ physica status solidi (a) 215, no. 18 (2018): 1800298

  29. E. Jokar, and Saeed Shahrokhian. “Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J. Solid State Electrochem. 19(1), 269–274 (2015)

    Article  CAS  Google Scholar 

  30. J. Xiao, S. Yang, “Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo 2 O 4 spinel for pseudocapacitors.“ RSC advances 1, no. 4 (2011): 588–595

  31. N. Zhao, H.F.M. Zhang, J. Ma, W. Zhang, C. Wang, H. Li, Xinbiao Jiang, and Xiaoqiang Cao. “Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte.“. Electrochim. Acta 321, 134681 (2019)

    Article  CAS  Google Scholar 

  32. L. Yu, J. Liu, W. Yin, J. Yu, R. Chen, D. Song, Q. Liu, R. Li, J. Wang, Ionic liquid combined with NiCo2O4/rGO enhances electrochemical oxygen sensing. Talanta 209, 120515 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. P. Shewale, Shivaji, Kwang-Seok, Yun. “NiCo2O4/RGO Hybrid Nanostructures on Surface-Modified Ni Core for Flexible Wire-Shaped Supercapacitor.“ Nanomaterials 11, no. 4 (2021): 852

  34. W. Zhang, W. Xin, T. Hu, Q. Gong, T. Gao, G. Zhou, One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials. Ceram. Int. 45(7), 8406–8413 (2019)

    Article  CAS  Google Scholar 

  35. G. Umeshbabu, Ediga, Rajeshkhanna, G. Ranga Rao, Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int. J. Hydrog. Energy 39(28), 15627–15638 (2014)

    Article  Google Scholar 

  36. P. Shewale, Shivaji, Kwang-Seok, Yun. “NiCo2O4/RGO hybrid nanostructures on surface-modified Ni core for flexible wire-shaped supercapacitor.“ Nanomaterials 11, no. 4 (2021): 852

  37. P. Selvamani, J. Stephen, L. Judith Vijaya, B. John Kennedy, M. Saravanakumar, Bououdina, Jothi Ramalingam Rajabathar. “Design of copper (II) oxide nanoflakes decorated with molybdenum disulfide@ reduced graphene oxide composite as an electrode for high performance supercapacitor.“ Synth. Met. 278 (2021): 116843

    Article  CAS  Google Scholar 

  38. P. Selvamani, J. Stephen, L. Judith Vijaya, B. John Kennedy, N. Saravanakumar, Clament Sagaya Selvam, and P. Joice Sophia. “Facile microwave synthesis of cerium oxide@ molybdenum di-sulphide@ reduced graphene oxide ternary composites as high performance supercapacitor electrode. J. Electroanal. Chem. 895, 115401 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Centennial Physics Ph.D Instrumentation Centre, Department of Physics, Loyola College, Chennai-600 034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Victor Antony Raj.

Ethics declarations

Conflict of interest

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britto, J.F., Samson, V.A.F., Bernadsha, S.B. et al. Synthesis of rNiCo Nanocomposite - As an Electrode Material for Supercapacitor Applications. J Inorg Organomet Polym 32, 4601–4613 (2022). https://doi.org/10.1007/s10904-022-02455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02455-1

Keywords

Navigation