Skip to main content
Log in

Quantum hydrodynamic model of density functional theory

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we extend the method in Cai et al. (J Math Phys 53:103503, 2012) to derive a class of quantum hydrodynamic models for the density-functional theory (DFT). The most popular implement of DFT is the Kohn–Sham equation, which transforms a many-particle interacting system into a fictitious non-interacting one-particle system. The Kohn–Sham equation is a non-linear Schrödinger equation, and the corresponding Wigner equation can be derived as an alternative implementation of DFT. We derive quantum hydrodynamic models of the Wigner equation by moment closure following Cai et al. (J Math Phys 53:103503, 2012). The derived quantum hydrodynamic models are globally hyperbolic thus locally wellposed. The contribution of the Kohn–Sham potential is turned into a nonlinear source term of the hyperbolic moment system. This work provides a new possible way to solve DFT problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964)

    Google Scholar 

  2. R. Askey, S. Wainger, Mean convergence of expansions in Laguerre and Hermite series. Am. J. Math 87(3), 695–708 (1965)

    Article  Google Scholar 

  3. F. Bloch, Bremsvernsctgen von atomenmitmehrevenelektronen. Z. Phys. 81, 363 (1933)

    Article  CAS  Google Scholar 

  4. Z. Cai, Y. Fan, R. Li, Globally hyperbolic regularization of Grad’s moment system. Comm. Pure Appl. Math. (to appear). http://arxiv.org/abs/1203.0376

  5. Z. Cai, Y. Fan, R. Li, T. Lu, Y. Wang, Quantum hydrodynamics models by moment closure of wigner equation. J. Math. Phys. 53, 103503 (2012)

    Article  Google Scholar 

  6. Z. Cai, R. Li, Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010)

    Article  Google Scholar 

  7. Z. Cai, R. Li, Y. Wang, Numerical regularized moment method for high Mach number flow. Commun. Comput. Phys. 11(5), 1415–1438 (2012)

    Google Scholar 

  8. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Article  CAS  Google Scholar 

  9. L.A. Cole, J.P. Perdew, Calculated electron affinities of the elements. Phys. Rev. A 25, 1265–1271 (1982)

    Article  CAS  Google Scholar 

  10. N. Crouseilles, P.-A. Hervieux, G. Manfredi, Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412 (2008)

    Article  Google Scholar 

  11. P. Degond, F. Méhats, C. Ringofer, Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118, 625–667 (2005)

    Article  Google Scholar 

  12. P.A.M. Dirac, Note on exchange phenomena in the Thomas–Fermi atom. Proc. Camb. Phil. R. Soc 26(3), 376–385 (1930)

    Article  CAS  Google Scholar 

  13. V.A. Fock, Näherungsmethode zur lösung des quantenmechanischen mehrkörper problems. Z. f. Physik 15, 126–148 (1930)

    Article  Google Scholar 

  14. X. Gao, J. Tao, G. Vignale, I.V. Tokatly, Continuum mechanics for quantum many-body systems: linear response regime. Phys. Rev. B 81, 195106 (2010)

    Article  Google Scholar 

  15. M. Gell-Mann, K.A. Brueckner, Correlation energy of an electron gas at high density. Phys. Rev. 106, 364–368 (1957)

    Article  CAS  Google Scholar 

  16. S.K. Ghosh, M. Berkowitz, R.G. Parr, Transcription of ground-state density-functional theory into a local thermodynamics. Proc. Natl. Acad. Sci. USA 81, 8028–8031 (1984)

    Article  CAS  Google Scholar 

  17. H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  Google Scholar 

  18. D.R. Hartree, The wave mechanics of an atom with a non-coulomb central field, Part I. Theory andd methods. Proc. Camb. Phil. Soc. 24, 89–110 (1928)

    Article  CAS  Google Scholar 

  19. M. Hillery, R.F. ÓConnell, Distribution functions in physics: fundamentals. Phys. Rep. 106(3), 121–167 (1984)

    Article  Google Scholar 

  20. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  21. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  Google Scholar 

  22. G. Manfredi, F. Haas, Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316 (2001)

    Article  Google Scholar 

  23. Á. Nagy, Time-dependent density functional theory as a thermodynamics. J. Mol. Struct. Theochem. 943(1–3), 48–52 (2010)

    Article  CAS  Google Scholar 

  24. Á. Nagy, R.G. Parr, Density functional theory as thermodynamics. Proc. Indian Acad. Sci. (Chem. Sci.) 106(2), 217–227 (1994)

  25. H. Ockendon, J.R. Ockendon, Waves and Compressible Flow, Texts in Applied Mathematics, vol. 47 (Springer, New York, 2004)

  26. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  27. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048–5079 (1981)

    Article  CAS  Google Scholar 

  28. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    Article  Google Scholar 

  29. A. Polkovnikov, Phase space representation of quantum dynamics. Ann. Phys. 325, 1790–1852 (2010)

    Article  CAS  Google Scholar 

  30. Z. Qian, V. Sahni, Physics of transformation from schrödinger theory to Kohn–Sham density-functional theory: application to an exactly solvable model. Phys. Rev. A 57, 2527–2538 (1998)

    Article  CAS  Google Scholar 

  31. E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997–1000 (1984)

    Article  CAS  Google Scholar 

  32. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics—A Practical Introduction, 3rd edn. (Springer, Berlin, 2009)

  33. V.G. Tsirelson, Á. Nagy, Binding entropy and its application to solids. J. Phys. Chem. A 113, 9022–9029 (2009)

    Article  CAS  Google Scholar 

  34. S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58(8), 1200–1211 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like thank the anonymous referees for their comments so instructive. This research of R. Li was supported in part by the National Basic Research Program of China (2011CB309704) and Fok Ying Tong Education and NCET in China. T. Lu was supported in part by NSFC (Grant No. 11011130029, 91230107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiao Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Fan, Y., Li, R. et al. Quantum hydrodynamic model of density functional theory. J Math Chem 51, 1747–1771 (2013). https://doi.org/10.1007/s10910-013-0176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0176-1

Keywords

Navigation