Skip to main content
Log in

Non-traditional high-energy processes for disintegration and exposure of finely disseminated mineral complexes

  • Mineral Dressing
  • Published:
Journal of Mining Science Aims and scope

Abstract

For the first time the modern non-traditional processes for treatment of rebellious noble metal-bearing mineral ore, aimed at improving disintegration efficiency for finely dispersed mineral complexes are analyzed. Advantages and perspectives of a new high-efficient, energy-saving and ecologically safe process of the nanosecond powerful electromagnetic impulse (PEMI) effect, are proved. The said process provides a stable increase in the valuable component recovery at lower energy consumption and production costs of the finite product at the stage of dressing rebellious gold-bearing ores and concentrated products. The possible mechanisms of mineral disintegration under PEMI effect are considered, experimental data, cited in the paper, prove high efficiency of the preliminary impulse treatment, thus, the increase in the gold recovery at the cyanidation stage amounted to 4–12 % from rebellious ores, 10–30 % from gravity concentrates, 5–45 % from flotation concentrates, 30–80 % from oil flotation tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Chanturia, “Contemporary problems of mineral raw material beneficiation in Russia,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1999) and Gorny Zh. No. 12 (2005).

  2. L. A. Veisberg and L. P. Zarogatskii, “Foundations of optimal mineral disintegration,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2003).

  3. V. A. Chanturia, “Advanced technologies for processing ores of complex noble metal deposits,” Geol. Rudn. Mestor., 45, No. 4 (2003).

    Google Scholar 

  4. V. A. Chanturia, Yu. V. Gulyaev, V. D. Lunin, I. Zh. Bunin, et al., “Opening of rebellious gold-bearing ore by powerful electromagnetic impulses,” Dokl. RAN, 366, No. 5 (1999).

  5. V. A. Chanturia, Yu. V. Gulyaev, I. Zh. Bunin, et al., “Synergetic effect of powerful electromagnetic impulses and porous humidity of opening of gold-bearing raw materials,” Dokl. RAN, 379, No. 3 (2001).

  6. V. A. Chanturia, I. Zh. Bunin, V. D. Lunin, et al., “Use of high-power electromagnetic pulses in processes of disintegration and opening of rebellious gold-containing raw material,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2001).

  7. V. A. Chanturia, Yu. V. Gulyaev, I. Zh. Bunin, et al., “Non-traditional highly effective breaking-up technology for resistant gold-containing ores and beneficiation products,” in: Proceedings of the 22nd International Mineral Processing Congress, Document Transformation Technologies, 1, Cape Town, South Africa (2003).

  8. V. A. Chanturia, I. Zh. Bunin, and V. D. Lunin, “Non-tarditional processes for disintegration and opening gold-bearing products: theory and commercial data,” Gorny Zh., No. 4 (2005).

  9. V. A. Chanturia, I. Zh. Bunin, and V. D. Lunin, “Use of high-voltage impulse machines and nanosecond electronics for processing of raw noble metal-bearing materials,” Marksheider. Nedropolz., No. 5 (2005).

  10. V. A. Chanturia, K. N. Trubetskoi, S. D. Viktorov, and I. Zh. Bunin, Nanoparticles in Processes for Destructure and Opening of Geomaterials [in Russian], IPKON RAN, Moscow (2006).

    Google Scholar 

  11. V. A. Chanturia, A. A. Fedorov, I. Zh. Bunin, et al., “Modernization of structural surface state of pyrite and arsenopyrite in processes for electrochemical opening of rebellious gold-bearing ores,” Gorny Zh., No. 2 (2000).

  12. I. N. Plaksin, R. Sh. Shafeev, V. A. Chanturia, and V. P. Yakushin, “On influence of ionizing radiation on flotation properties of minerals,” in: Mineral Processing. Selectals [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  13. R. Sh. Shafeev, V. A. Chanturia, and V. P. Yakushin, Influence of Ionizing Radiation on Flotation Process [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  14. G. R. Bochkarev, V. I. Rostovtsev, Yu. P. Veigel’t, et al., “Perspectives of use of accelerated electron energy in rough ore processing,,” in: New Methods in Complex Mineral Processing Schemes [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  15. V. A. Chanturia, V. E. Vigdergauz, V. D. Lunin, et al., “High-efficient processes for ore preparation and complex polymetal ore processing,” Gorny Vestnik, No. 5 (1997).

  16. G. R. Bochkarev, V. A. Chanturia, V. E. Vigdergauz, V. D. Lunin, et al. “Prospects of electron accelerators used for realizing effective low-cost technologies of mineral processing,” in: Proceedings of the 20th International Mineral Processing Congress, 1, Aachen, Germany / Clausthal-Zellerfeld, GDMB (1997).

    Google Scholar 

  17. V. A. Chanturia and V. E. Vigdergauz, “Scientific foundations and perspectives of commercial application of accelerated electron energy in mineral processing,” Gorn J., No. 7 (1995).

  18. V. A. Chanturiya, T. A. Ivanova, V. D. Lunin, and V. D. Nagibin, “Intensificatio of dissolution process of rebellious gold-bearing products under action of flow of accelerated electrons,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2000).

  19. A. B. Khwan, V. G. Kolesnik, G. S. Satarov, et al., “Studies of the potential use of a microwave field for ore preparation in gold industry,” Gorny Vestnik Uzbekistana, No. 2 (2000).

  20. V. D. Lunin, A. V. Narseyev, N. I. Barashnev, and E. V. Ratnikov, “Model of process of microwave action on refractory gold concentrate,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1997).

  21. Yu. A. Kotov, G. A. Mesyats, A. L. Filatov, et al., “Complex processing of pyrite tailings by nanosecond impulses,” Dokl. RAN, 372, No. 5 (2000).

    Google Scholar 

  22. V. I. Kurets, A. F. Usov, and V. A. Tsukerman, Electroimpulse Disintegration of Materials [in Russian], KNTs RAN, Apatity (2002).

    Google Scholar 

  23. V. S. Teslenko, V. I. Rostovtsev, K. A. Lomanovich, et al., “Electrical blasting disintegration of copper-nickel ore conjointly with separation of particles by size,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2007).

  24. S. A. Goncharov, P. P. Anan’ev, and V. P. Bruev, “Weakening of ferriferous quartzites by impulse electromagnetic treatment,” Gorny Zh., No. 1 (2004).

  25. G. V. Sedel’nikova, G. S. Krylova, and P. P. Anan’ev, “On application of magnetic-impulse technology for intensification of gold extraction from ores and concentrates,” Rudy Met., No.1 (2005).

  26. I. Zh. Bunin, N. S. Bunina, V. A. Vdovin, et al., “Studies of non-thermal effect of powerful electromagnetic impulses on rebellious gold-bearing raw materials,” Izv. RAN, Fizika, 65, No. 12 (2001).

  27. V. A. Chanturia, I. Zh. Bunin, and A. T. Kovalev, “Mechanism of disintegration of mineral media under powerful electromagnetic impulse effect,” Izv. RAN, Fizika, 68, No. 5 (2004).

  28. V. A. Chanturia, I. Zh. Bunin, and A. T. Kovalev, “Selective disintegration of finely dispersed mineral complexes under high-impulse effect,” Izv. RAN, Fizika, 69, No. 7 (2005).

  29. V. A. Chanturia, I. Zh. Bunin, and A. T. Kovalev, Mechanisms of Disintegration of Mineral Media Exposed to High-power Electromagnetic Pulses, Computational Methods, G.R. Liu, V.B.C. Tan, X. Han (Eds.), Springer, Berlin, Heidelberg, New York, 2 (2006)

    Google Scholar 

  30. B. V. Semkin, A. F. Usov, and V. I. Kurets, Foundations of Electrical Impulse Destruction of Materials [in Russian], Nauka, Saint-Petersburg (1993).

    Google Scholar 

  31. G. A. Mesyats, Impulse Energy and Electronics [in Russian], Nauka, Moscow (2004).

    Google Scholar 

  32. Yu. N. Vershinin, Electronic-Thermal and Detonation Processes under Breakdown of Solid Dielectrics [in Russian], UrO RAN, Ekaterinburg (2000).

    Google Scholar 

  33. Yu. B. Raizer, Physics of Gas Discharge [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  34. E. D. Lozanskii, “Development of electronic avalanches and streamers,” Uspekhi Fiz Nauk, 117, No. 3 (1975).

  35. K. E. Haque, “Microwave energy for mineral treatment processes-a brief review,” J. of Mineral Processing, 57, No. 1 (1999).

    Google Scholar 

  36. V. M. Galitskii and V. M. Ermachenko, Macroscopic Electrodynamics [in Russian], Vyssh. Shkola, Moscow (1988).

    Google Scholar 

  37. A. A. Yatsenko, L. I. Alekseeva, and B. A. Zakharov, “Development of new mineral processing technologies at Norilsk concentration factory,” Tsvet. Metally, No. 6 (2001).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 3, pp. 107–128, May–June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanturia, V.A., Bunin, I.Z. Non-traditional high-energy processes for disintegration and exposure of finely disseminated mineral complexes. J Min Sci 43, 311–330 (2007). https://doi.org/10.1007/s10913-007-0032-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10913-007-0032-4

Navigation