Skip to main content
Log in

Performance Evaluation of Color Models in the Fusion of Functional and Anatomical Images

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Fusion of the functional image with an anatomical image provides additional diagnostic information. It is widely used in diagnosis, treatment planning, and follow-up of oncology. Functional image is a low-resolution pseudo color image representing the uptake of radioactive tracer that gives the important metabolic information. Whereas, anatomical image is a high-resolution gray scale image that gives structural details. Fused image should consist of all the anatomical details without any changes in the functional content. This is achieved through fusion in de-correlated color model and the choice of color model has greater impact on the fusion outcome. In the present work, suitability of different color models for functional and anatomical image fusion is studied. After converting the functional image into de-correlated color model, the achromatic component of functional image is fused with an anatomical image by using proposed nonsubsampled shearlet transform (NSST) based image fusion algorithm to get new achromatic component with all the anatomical details. This new achromatic and original chromatic channels of functional image are converted to RGB format to get fused functional and anatomical image. Fusion is performed in different color models. Different cases of SPECT-MRI images are used for this color model study. Based on visual and quantitative analysis of fused images, the best color model for the stated purpose is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  1. Daisne, J.-F., Sibomana, M., Bol, A., Cosnard, G., Lonneux, M., and Grégoire, V., Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: accuracy, reproducibility and consistency. Radiother. Oncol. 69(3):237–245, 2003. doi:10.1016/j.radonc.2003.10.009.

    Article  PubMed  Google Scholar 

  2. Xing, L., Thorndyke, B., Schreibmann, E., Yang, Y., Li, T.-F., Kim, G.-Y., Luxton, G., and Koong, A., Overview of image-guided radiation therapy. Med. Dosim. 31(2):91–112, 2006. doi:10.1016/j.meddos.2005.12.004.

    Article  PubMed  Google Scholar 

  3. Paulino, A. C., Thorstad, W. L., and Fox, T., Role of fusion in radiotherapy treatment planning. Semin. Nucl. Med. 33(3):238–243, 2003. doi:10.1053/snuc.2003.127313.

    Article  PubMed  Google Scholar 

  4. Jadvar, H., and Colletti, P. M., Competitive advantage of PET/MRI. Eur. J. Radiol. 83(1):84–94, 2014. doi:10.1016/j.ejrad.2013.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gorniak, R. J., Kramer, E. L., Maguire, G. Q., Jr., Noz, M. E., Schettino, C. J., and Zeleznik, M. P., Evaluation of a semiautomatic 3D fusion technique applied to molecular imaging and MRI brain/frame volume data sets. J. Med. Syst. 27(2):141–156, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Keidar, Z., Israel, O., and Krausz, Y., SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin. Nucl. Med. 33(3):205–218, 2003. doi:10.1053/snuc.2003.127310.

    Article  PubMed  Google Scholar 

  7. Lee, J. S., Kim, B., Chee, Y., Kwark, C., Lee, M. C., and Park, K. S., Fusion of coregistered cross-modality images using a temporally alternating display method. Med. Biol. Eng. Comput. 38(2):127–132, 2000. doi:10.1007/BF02344766.

    Article  CAS  PubMed  Google Scholar 

  8. Noz, M. E., Maguire, G. Q., Jr., Zeleznik, M. P., Kramer, E. L., Mahmoud, F., and Crafoord, J., A versatile functional-anatomic image fusion method for volume data sets. J. Med. Syst. 25(5):297–307, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Baum, K., Helguera, M., and Krol, A., Fusion viewer: a New tool for fusion and visualization of multimodal medical data sets. J. Digit. Imaging 21(1):59–68, 2008. doi:10.1007/s10278-007-9082-z.

    Article  PubMed Central  Google Scholar 

  10. Baum, K. G., Schmidt, E., Rafferty, K., Krol, A., and Helguera, M., Evaluation of novel genetic algorithm generated schemes for positron emission tomography (PET)/magnetic resonance imaging (MRI) image fusion. J. Digit. Imaging 24(6):1031–1043, 2011. doi:10.1007/s10278-011-9382-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tu, T.-M., Su, S.-C., Shyu, H.-C., and Huang, P. S., A new look at IHS-like image fusion methods. Inf Fusion 2(3):177–186, 2001. doi:10.1016/S1566-2535(01)00036-7.

    Article  Google Scholar 

  12. He, C., Liu, Q., Li, H., and Wang, H., Multimodal medical image fusion based on IHS and PCA. Procedia Eng 7:280–285, 2010.

    Article  Google Scholar 

  13. Daneshvar, S., and Ghassemian, H., MRI and PET image fusion by combining IHS and retina-inspired models. Inf Fusion 11(2):114–123, 2010.

    Article  Google Scholar 

  14. Bhatnagar, G., Wu, Q. M. J., and Zheng, L., Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Trans. Multimedia 15(5):1014–1024, 2013. doi:10.1109/TMM.2013.2244870.

    Article  Google Scholar 

  15. Momeni, S., and Pourghassem, H., An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy. J. Med. Syst. 38(8):70, 2014. doi:10.1007/s10916-014-0070-9.

    Article  PubMed  Google Scholar 

  16. Easley, G., Labate, D., and Lim, W.-Q., Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25(1):25–46, 2008. doi:10.1016/j.acha.2007.09.003.

    Article  Google Scholar 

  17. Gonzalez, R. C., Woods, R. E., Digital image processing (3rd Edition). Prentice-Hall, Inc., 2006.

  18. Chun-Liang, C., and Wen-Hsiang, T., Image fusion with no gamut problem by improved nonlinear IHS transforms for remote sensing. IEEE Trans. Geosci. Remote Sens. 52(1):651–663, 2014. doi:10.1109/TGRS.2013.2243157.

    Article  Google Scholar 

  19. Hoffmann, G., http://docs-hoffmann.de/cielab03022003.pdf.

  20. Ruderman, D. L., Cronin, T. W., and Chiao, C.-C., Statistics of cone responses to natural images: implications for visual coding. J. Opt. Soc. Am. A 15(8):2036–2045, 1998. doi:10.1364/JOSAA.15.002036.

    Article  Google Scholar 

  21. Reinhard, E., Adhikhmin, M., Gooch, B., and Shirley, P., Color transfer between images. IEEE Comput. Graph. Appl. 21(5):34–41, 2001. doi:10.1109/38.946629.

    Article  Google Scholar 

  22. Wang, Q. L., Nonseparable shearlet transform. IEEE Trans. Image Process. 22(5):2056–2065, 2013. doi:10.1109/TIP.2013.2244223.

    Article  Google Scholar 

  23. Momeni, S., and Pourghassem, H., An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy. J. Med. Syst. 38(8):1–16, 2014. doi:10.1007/s10916-014-0070-9.

    Article  Google Scholar 

  24. Xydeas, C. S., and Petrović, V., Objective image fusion performance measure. Electron. Lett. 36(4):308–309, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma Ganasala.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganasala, P., Kumar, V. & Prasad, A.D. Performance Evaluation of Color Models in the Fusion of Functional and Anatomical Images. J Med Syst 40, 122 (2016). https://doi.org/10.1007/s10916-016-0478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0478-5

Keywords

Navigation