Skip to main content
Log in

An Improved Full Convolutional Network Combined with Conditional Random Fields for Brain MR Image Segmentation Algorithm and its 3D Visualization Analysis

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Existing brain region segmentation algorithms based on deep convolutional neural networks (CNN) are inefficient for object boundary segmentation. In order to enhance the segmentation accuracy of brain tissue, this paper proposed an object region segmentation algorithm that combines pixel-level information and semantic information. Firstly, we extract semantic information by CNN with the attention module and get the coarse segmentation results through a specific pixel-level classifier. Then, we exploit conditional random fields to model the relationship between the underlying pixels so as to get local features. Finally, the semantic information and the local pixel-level information are respectively used as the unary potential and the binary potential of the Gibbs distribution, and the combination of both can obtain the fine region segmentation algorithm based on the fusion of pixel-level information and the semantic information. A large number of qualitative and quantitative test results show that our proposed algorithm has higher precision than the existing state-of-the-art deep feature models, which can better solve the problem of rough edge segmentation and produce good 3D visualization effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tang, Z., Wang, S., Huo, J. et al. Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction[C]//. Journal of Physics Conference Series. 1–12, 2017.

  2. Zhao, X., Wu, Y., Song, G. et al., A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Medical Image Analysis 43:98–111, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sauwen, N., Acou, M., Sima, D. M. et al., Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization[J]. BMC Medical Imaging 17(1):11–19, 2017.

    Article  Google Scholar 

  4. Gholipour, A., Rollins, C. K., Velasco-Annis, C. et al., A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth[J]. Scientific Reports 7(1):476–488, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Heudorfer, L., and Stammberger, T., Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness - magnetic resonance imaging[J]. Magnetic Resonance Imaging 19(2):177–185, 2001.

    Article  PubMed  Google Scholar 

  6. Fischl, B., Salat, D. H., Busa, E. et al., Whole brain segmentation[J]. Neuron 33(3):341–355, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, H., Dou, Q., Yu, L. et al., VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images[J]. NeuroImage 53(8):119–127, 2017.

    Google Scholar 

  8. Kauppi, J. P., Pajula, J., Niemi, J. et al., Functional brain segmentation using inter-subject correlation in fMRI[J]. Human Brain Mapping 38(5):2643–2665, 2017.

    Article  PubMed  Google Scholar 

  9. Keshavan A, Datta E, M. Mcdonough I, et al. Mindcontrol: A web application for brain segmentation quality control[J]. NeuroImage, 2017,10(5):381–407.

  10. Mahbod, A., Chowdhury, M., Smedby, Ö. et al., Automatic brain segmentation using artificial neural networks with shape context[J]. Pattern Recognition Letters 10(1):74–79, 2018.

    Article  Google Scholar 

  11. Biscay, R. J., Bosch-Bayard, J. F., and Pascual-Marqui, R. D., Unmixing EEG inverse solutions based on brain segmentation[J]. Frontiers in Neuroscience 12:325–328, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, Y., Zu, C., Ma, Z. et al., Patch-wise label propagation for MR brain segmentation based on multi-atlas images[J]. Multimedia Systems 12(12):25–35, 2017.

    Google Scholar 

  13. Kong, Y., Chen, X., Wu, J. et al., Automatic brain tissue segmentation based on graph filter[J]. BMC Medical Imaging 18(1):174–179, 2018.

    Article  Google Scholar 

  14. Xuan, T. P., Siarry, P., and Oulhadj, H., Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation[J]. Applied Soft Computing 24(1):183–197, 2018.

    Google Scholar 

  15. Akkus, Z., Galimzianova, A., Hoogi, A. et al., Deep learning for brain MRI segmentation: State of the art and future directions[J]. Journal of Digital Imaging 9(4):597–609, 2017.

    Google Scholar 

  16. Kernel sparse representation for MRI image analysis in automatic brain tumor segmentation[J]. Frontiers of Information Technology & Electronic Engineering, 19(04):5–14, 2018.

  17. Chenfei, Y., Ting, M., Dan, W. et al., Atlas pre-selection strategies to enhance the efficiency and accuracy of multi-atlas brain segmentation tools[J]. PLOS ONE 13(7):280–294, 2018.

    Google Scholar 

  18. Van d, K. L. A., Jeroen, D. B., Jeroen, H. et al., Fast CSF MRI for brain segmentation; cross-validation by comparison with 3D T1-based brain segmentation methods[J]. PLOS ONE 13(4):196–219, 2018.

    Google Scholar 

  19. Craddock, R. C., Bellec, P., and Jbabdi, S., Brain segmentation review[J]. NeuroImage 53(8):119–137, 2017.

    Google Scholar 

  20. Havaei, M., Davy, A., Warde-Farley, D. et al., Brain tumor segmentation with deep neural networks[J]. Medical Image Analysis 35:18–31, 2015.

    Article  Google Scholar 

  21. Ley-Zaporozhan, J., Ley, S., Eberhardt, R. et al., Visualization of morphological parenchymal changes in emphysema: Comparison of different MRI sequences to 3D-HRCT[J]. European Journal of Radiology 73(1):29–49, 2010.

    Article  Google Scholar 

  22. Bomans, M., Laub, G. et al., Improvement of 3D acquisition and visualization in MRI[J]. Magnetic Resonance Imaging 9(4):597–609, 1991.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe, Y., Mooij, R., Mark Perera, G. et al., Heterogeneity phantoms for visualization of 3D dose distributions by MRI-based polymer gel dosimetry[J]. Medical Physics 31(5):975–985, 2004.

    Article  PubMed  Google Scholar 

  24. Kuder, T. A., Risse, F., Eichinger, M. et al., New method for 3D parametric visualization of contrast-enhanced pulmonary perfusion MRI data[J]. European Radiology 18(2):291–297, 2008.

    Article  PubMed  Google Scholar 

  25. Kalia, V., Fritz, B., Johnson, R. et al., CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons[J]. European Radiology 19(4):97–109, 2017.

    Google Scholar 

  26. Xia, K., Liu, Z. Renal Segmentation Algorithm Combined Low-level Features with Deep Coding Feature. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, pp. 752–757, 2018.

  27. Otsubo, H., Akatsuka, Y., Takashima, H., et al. MRI depiction and 3D visualization of three anterior cruciate ligament bundles[J]. Clinical Anatomy, 2016.

  28. Qian, P., Sun, S., Jiang, Y., Kuan-Hao, S., Ni, T., Wang, S., and Muzic, Jr., R. F., Cross-domain, soft-partition clustering with diversity measure and knowledge reference. Pattern Recognition 50:155–177, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qian, P., Zhou, J., Jiang, Y., Liang, F., Zhao, K., Wang, S., Su, K.-H., and Muzic, Jr., R. F., Multi-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributes. IEEE Access 6:28594–28610, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qian, P., Chung, F.-L., Wang, S., and Deng, Z., Fast graph-based relaxed clustering for large data sets using minimal enclosing ball. IEEE Transactions on Systems, Man, and Cybernetics- Part B 42(3):672–687, 2012.

    Article  Google Scholar 

  31. Jiang, Y., Wu, D., Deng, Z., Qian, P., Wang, J., Wang, G., Chung, F.-L., Choi, K.-S., and Wang, S., Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system. IEEE Trans. Neural Systems & Rehabilitation Engineering 25(12):2270–2284, 2017.

    Article  Google Scholar 

  32. Jiang, Y., Deng, Z., Chung, F.-L., Wang, G., Qian, P., Choi, K.-S., and Wang, S., Recognition of epileptic EEG signals using a novel multi-view TSK fuzzy system. IEEE Trans. Fuzzy Systems 25(1):3–20, 2017.

    Article  Google Scholar 

  33. Jiang, Y., Chung, F.-L., Wang, S., Deng, Z., Wang, J., and Qian, P., Collaborative fuzzy clustering from multiple weighted views. IEEE Transactions on Cybernetics 45(4):688–701, 2015.

    Article  PubMed  Google Scholar 

  34. Xia, K.-j., Yin, H.-s., and Zhang, Y.-d., Deep semantic segmentation of kidney and Space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow algorithm. Journal of medical systems 43(1):2, 2019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiemin Zhai.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Ethical Approval

The paper does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Li, H. An Improved Full Convolutional Network Combined with Conditional Random Fields for Brain MR Image Segmentation Algorithm and its 3D Visualization Analysis. J Med Syst 43, 292 (2019). https://doi.org/10.1007/s10916-019-1424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1424-0

Keywords

Navigation