Skip to main content
Log in

Study of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/Bamboo Pulp Fiber Composites: Effects of Nucleation Agent and Compatibilizer

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber (BPF) composites were prepared by melt compounding and injection molding. The crystallization ability, tensile strength and modulus, flexural strength and modulus, and impact strength were found substantially increased by the addition of BPF. Tensile and flexural elongations were also moderately increased at low fiber contents (<20%). BPF demonstrated not only higher strength and modulus, but also higher failure strain than the PHBV8 matrix. Boron nitride (BN) was also investigated as a nucleation agent for PHBV8 and maleic anhydride grafted PHBV8 (MA-PHBV8) as a compatibilizer for the composite system. BN was found to increase the overall properties of the neat polymer and the composites due to refined crystalline structures. MA-PHBV8 improved polymer/fiber interactions and therefore resulted in increased strength and modulus. However, the toughness of the composites was substantially reduced due to the hindrance to fiber pullout, a major energy dissipation source during the composite deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Herrmann A, Nickel J, Riedel U (1998) Polym Degrad Stab 59:251–261

    Article  CAS  Google Scholar 

  2. Riedel U, Nickel J (1999) Angew Makromol Chem 272:34–40

    Article  CAS  Google Scholar 

  3. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  4. Saxena M, Gowri S (2003) Polym Compos 24:428–436

    Article  CAS  Google Scholar 

  5. Das M, Pal A, Chakraborty D (2006) J Appl Polym Sci 100:238–244

    Article  CAS  Google Scholar 

  6. Kori Y, Kitagawa K, Hamada H (2005) J Appl Polym Sci 98:603–612

    Article  CAS  Google Scholar 

  7. Mi Y, Chen X, Guo Q (1997) J Appl Polym Sci 64:1267–1273

    Article  CAS  Google Scholar 

  8. Chen X, Guo Q, Mi Y (1998) J Appl Polym Sci 69:1891–1899

    Article  CAS  Google Scholar 

  9. Lee SH, Wang SQ (2006) Compos Part A 37:80–91

    Article  CAS  Google Scholar 

  10. Marchessault RH, Coulombe S (1981) Can J Chem 59:38

    Article  CAS  Google Scholar 

  11. Barham PJ, Keller A, Otun EL, Holmes PA (1984) J Mater Sci 19:2781–2794

    Article  CAS  Google Scholar 

  12. Holmes PA (1988) In: Development in crystalline polymers. Elsevier Applied Science Publishers, London

  13. Ouajai S, Hodzic A, Shanks RA (2004) J Appl Polym Sci 94:2456–2465

    Article  CAS  Google Scholar 

  14. Wong S, Shanks R, Hodzic A (2002) Macromol Mater Eng 287:647–655

    CAS  Google Scholar 

  15. Bhardwaj R, Mohanty A, Drzal LT, Pourboghrat F, Misra M (2006) Biomacromolecules 287:647–655

    Google Scholar 

  16. Mohanty AK, Khan MA, Hinrichsen G (2000) Compos Sci Technol 60:1115–1124

    Article  CAS  Google Scholar 

  17. Reinsch V, Kelley S (1997) J Appl Polym Sci 64:1785–1796

    Article  CAS  Google Scholar 

  18. Fernandes EG, Pietrini M, Chiellini E (2004) Biomacromolecules 5:1200–1205

    Article  Google Scholar 

  19. Singh S, Mohanty AK (2007) Compos Sci technol 67:1753–1763

    Article  CAS  Google Scholar 

  20. Van De Velde K, Kiekens P (2002) Polym Test 21:433–442

    Article  Google Scholar 

  21. Luo S, Netravalli AN (1999) J Mater Sci 34:3709–3719

    Article  CAS  Google Scholar 

  22. Harper D, Wolcott MP (2004) Compos Part A 35:385–394

    Article  Google Scholar 

  23. Dean D, Marchione AA, Rebenfeld L, Register R (1999) Polym Adv Technol 10:655–668

    Article  CAS  Google Scholar 

  24. Carlson D, Nie L, Narayan R, Dubois P (1999) J Appl Polym Sci 72:477–485

    Article  CAS  Google Scholar 

  25. John J, Tang J, Bhattacharya M (1998) J Appl Polym Sci 67:1947–1955

    Article  CAS  Google Scholar 

  26. Chen C, Peng S, Fei B, Zhuang Y, Dong L, Feng Z, Chen S, Xia H (2003) J Appl Polym Sci 88:659–668

    Article  CAS  Google Scholar 

  27. Qian J, Zhu L, Zhang J, Whitehouse RS (2007) J Polym Sci Part B Polym Phys 45:1564–1577

    Article  CAS  Google Scholar 

  28. Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng Z (2002) Eur Polym J 38:1663–1670

    Article  CAS  Google Scholar 

  29. Zhang XF, Xie F, Pen ZL, Zhang Y, Zhang YX, Zhou W (2002) Eur Polym J 38:1–6

    Article  Google Scholar 

  30. Zhang JL, Wu L, Zhao ML, Li JC, Wang CL (2005) J Appl Polym Sci 96:883–893

    Article  CAS  Google Scholar 

  31. Yuksekkalayci C, Yilmazer U, Orbey N (2004) Polym Eng Sci 39:1216–1222

    Article  Google Scholar 

  32. Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty A, Misra M, Drzal L (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis Group, Boca Raton, pp 37–108

    Google Scholar 

  33. Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, Cambridge, p 111, p 112

  34. Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites, 2nd edn. Wiley, New York, p 123, p 325

  35. Wibowo AC, Mohanty AK, Misra M, Drzal LT (2004) Ind Eng Chem Res 43:4883–4888

    Article  CAS  Google Scholar 

  36. Oksman K, Clemons C (1998) J Appl Polym Sci 67:1503–1513

    Article  CAS  Google Scholar 

  37. Tobias BC (1993) Proceedings of the international conference on advanced composite materials. Minerals, Metals & Materials Society, p 623

  38. Nielsen EL (1976) In: Mechanical properties of polymer and composites. Marcel Dekker, New York, p 483

  39. Sheldon RP (1982) Composite polymeric materials. Applied Science Publisher, London, pp 86–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Huang, J., Qian, J. et al. Study of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/Bamboo Pulp Fiber Composites: Effects of Nucleation Agent and Compatibilizer. J Polym Environ 16, 83–93 (2008). https://doi.org/10.1007/s10924-008-0086-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-008-0086-7

Keywords

Navigation