Skip to main content
Log in

Rheology of Concentrated Cellulose Solutions in 1-Butyl-3-methylimidazolium Chloride

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Rheological behavior of the concentrated cellulose/1-butyl-3-methylimidazolium chloride ([BMIM]Cl) solutions was investigated. As polymeric fluid, solutions of cellulose in [BMIM]Cl display a marked elastic behavior under shear flow. The dependence of the shear viscosity η, and of the dynamic modulus, on concentration, average degree of polymerization (DP) and temperature is discussed. At lower concentrations and degrees of polymerization (DP), cellulose solutions show viscous, inelastic behavior at low frequencies and low shear rate. At higher concentration and DP, cellulose solutions are more elastic at higher frequencies and shear rate. Such solutions also have some usual rheological properties. The dynamic rheological responses revealed that the Cox–Merz rule did not hold for these cellulose solutions at high deformation rate. Plotting storage modulus G′ against loss modulus G″ gave almost a master curve which is independent of temperature and concentration, with the slope of about 1.651 for 10 wt% cellulose solutions. This value indicates the existence of microheterogeneity in the solution system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. McCormick C, Callais P, Hutchinson B (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394

    Article  CAS  Google Scholar 

  2. Schweiger H, Richard G (1969) Solvation of cellulose and other polysaccharides. Chem Ind (London) 10:296

    Google Scholar 

  3. Johnson D, Nicholson M, Haigh F (1976) Dimethyl sulfoxide/paraformaldehyde: a nondegrading solvent for cellulose. Appl Polym Symp 28:931

    CAS  Google Scholar 

  4. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci, Part B: Polym Phys 40:1521

    Article  CAS  Google Scholar 

  5. Gagnaire D, Mancier D, Vincendon M (1980) Cellulose organic solutions: a nuclear magnetic resonance investigation. J Polym Sci Polym Chem Ed 18:13

    Article  CAS  Google Scholar 

  6. Blachot J, Brunet N, Navard P, Cavaille J (1998) Rheological behavior of cellulose/monohydrate of n-methylmorpholine n-oxide solutions. Part 1: liquid state. Rheol Acta 37:107

    Article  CAS  Google Scholar 

  7. Petrovan S, Collier J, Morton G (2000) Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions. J Appl Polym Sci 77:1369

    Article  CAS  Google Scholar 

  8. Navardd P, Handin J (1980) Rheology of mesomorphic solutions of cellulose. Br Polym J 12:174

    Article  Google Scholar 

  9. Kima S, Shina W, Choa H, Kimb B, Chunga I (1999) Rheological investigation on the anisotropic phase of cellulose–MMNO/H2O solution system. Polymer 40:6443

    Article  Google Scholar 

  10. Chae D, Kim B, Lee W (2002) Rheological characterization of cellulose solutions in N-methyl morpholine N-oxide monohydrate. J Appl Polym Sci 86:216

    Article  CAS  Google Scholar 

  11. Navard P, Haudin J, Quenin I, Peguy A (1986) Shear rheology of diluted solutions of high molecular weight cellulose. J Appl Polym Sci 32:5829

    Article  CAS  Google Scholar 

  12. Han J, Feng D, Choi-Feng C, Han C (1995) Effects of sample preparation and flow geometry on the rheological behaviour and morphology of microphase-separated block copolymers: comparison of cone-and-plate and capillary data. Polymer 36:155

    Article  CAS  Google Scholar 

  13. Petrovan S, Collier J, Negulescu I (2001) Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions of different degrees of polymerization. J Appl Polym Sci 79:396

    Article  CAS  Google Scholar 

  14. Swatloski R, Spear S, Holbrey J, Rogers R (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974

    Article  CAS  Google Scholar 

  15. Remsing R, Swatloski R, Rogers R, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 1271

  16. Ren Q, Wu J, Zhang J, He J, Guo L (2003) Dissolution of cellulose with ionic liquids. Acta Polym Sin 448

  17. Hermanutz F, Gahr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23

    Article  CAS  Google Scholar 

  18. Kuang Q, Zhao J, Niu Y, Zhang J, Wang Z (2008) Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J Phys Chem B 112:10234

    Article  CAS  Google Scholar 

  19. Rao M (1990) Rheology of fluid and semisolid foods principles and applications. Aspen Publishers, Gaithersburg, MD

    Google Scholar 

  20. Tam K, Jenkins R, Winnik M, Bassett D (1998) A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows. Macromolecules 31:4149

    Article  CAS  Google Scholar 

  21. Bokias G, Hourdet D, Iliopoulos I (2000) Positively charged amphiphilic polymers based on poly(N-isopropylacrylamide): phase behavior and shear-induced thickening in aqueous solution. Macromolecules 33:2929

    Article  CAS  Google Scholar 

  22. Ahn K, Osaki K (1994) A network model for predicting the shear thickening behavior of a poly(vinyl alcohol)-sodium borate aqueous solution. J Non-Newtonian Fluid Mech 55:215

    Article  CAS  Google Scholar 

  23. Han C, Kim J, Kim J (1989) Determination of the order–disorder transition temperature of block copolymers. Macromolecules 22:383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by a grant from the Ministry of Education of the People’s Republic of China (Grant No. 707026), Science and Technology Commission of Shanghai Municipality (Grant No. 08XD14005) and Shanghai Leading Academic Discipline Project (Grant No. B603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Zhang, Y., Cheng, L. et al. Rheology of Concentrated Cellulose Solutions in 1-Butyl-3-methylimidazolium Chloride. J Polym Environ 17, 273–279 (2009). https://doi.org/10.1007/s10924-009-0149-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-009-0149-4

Keywords

Navigation