Skip to main content
Log in

Influence of Hygrothermal Ageing on the Physico-Mechanical Properties of Alkali Treated Industrial Hemp Fibre Reinforced Polylactic Acid Composites

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

30 wt% aligned untreated long hemp fibre/polylactic acid (AUL) and aligned alkali treated long hemp fibre/polylactic acid (AAL) composites were produced by film stacking and subjected to hygrothermal ageing environment along with neat polylactic acid (PLA). Hygrothermal ageing was carried out by immersing samples in distilled water at 25 and 50 °C over a period of 3 months. It was found that both neat PLA and composites followed Fickian diffusion. Higher temperature generally increased the Diffusion coefficient, D of neat PLA and composites, as well as shortening the saturation time. Neat PLA had the lowest D value followed by AAL composites and then AUL composites. After hygrothermal ageing, tensile and flexural strength, Young’s and flexural modulus and K Ic were found to decrease and impact strength was found to increase for both AUL and AAL composites. AUL composites had greater overall reduction in mechanical properties than that for AAL composites after hygrothermal ageing. Crystallinity contents of the hygrothermal aged composites support the results of the deterioration of mechanical properties upon exposure to hygrothermal ageing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peijs T, Melick HGH, Garkhail SK, Pott GT, Baille CA (1998) Proceedings of the European conference on composite materials: science, technologies and applications, ECCM-8, pp 119–126

  2. Rowell RM (1995) Proceedings of a seminar, Copenhagen, Denmark, pp 27–41

  3. Gassan J, Bledzki AK (1997) Polym Compos 18:179–184

    Article  CAS  Google Scholar 

  4. Clemons C (2002) J For Prod 52:10–18

    Google Scholar 

  5. Morton J, Quarmley J, Rossi L (2003) Proceedings of 7th international conference on woodfiber-plastic composites, Forest Products Society (FPS), p 376

  6. Rowell RM (1991) Wood and cellulose chemistry. Marcel Dekker, New York

    Google Scholar 

  7. Andreopoulos AG, Tarantili PA (1988) J Appl Polym Sci 70:747–755

    Article  Google Scholar 

  8. Springer GS, Technomic (1981/1984/1988)1-3

  9. Lin Q, Zhou X, Dai G (2002) J Appl Polym Sci 85:2824–2832

    Article  CAS  Google Scholar 

  10. Comyn J (1985) Polymer permeability. Elsevier Applied Science Publishers, London

    Google Scholar 

  11. Crank JJ, Park GS (1968) Organic vapours above the glass transition temperature. Academic Press, London

    Google Scholar 

  12. Crank J (1956) The mathematics of diffusion, p 347

  13. Islam MS, Pickering KL, Foreman NJ (2009) J Appl Polym Sci. doi:10.1002/app.31335

  14. Wunderlich B (1958) J Chem Phys 29:1395–1404

    Article  CAS  Google Scholar 

  15. Ljungberg N, Wesslen B (2005) Biomacromolecules 6:1789–1796

    Article  CAS  Google Scholar 

  16. Reinsch VE, Kelley SS (1997) J Appl Polym Sci 64:1785

    Article  CAS  Google Scholar 

  17. Vasanthakumari R, Pennings A (1983) Polymer 24:175

    Article  CAS  Google Scholar 

  18. Nam JY, Ray SS, Okamoto M (2003) Macromolecules 36:7126

    Article  CAS  Google Scholar 

  19. Islam MS, Pickering KL, Foreman NJ (2009) J Adhes Sci Technol 23:2085–2107

    Article  CAS  Google Scholar 

  20. Felix JM, Gatenholm PJ (1991) J Appl Polym Sci 42:609

    Article  CAS  Google Scholar 

  21. Bledzki AK, Reihmane S, Gassan J (1996) J Appl Polym Sci 59:1329–1336

    Article  CAS  Google Scholar 

  22. Joseph PV, Rabello MS, Mattoso LHC, Joseph K, Thomas S (2002) Compos Sci Technol 62:1357–1372

    Article  CAS  Google Scholar 

  23. Zhou J, Lucas JP (1995) Compos Sci Technol 53:57–64

    Article  CAS  Google Scholar 

  24. Chow CPL, Xing XS, Li RKY (2007) Compos Sci Technol 67:306–313

    Article  CAS  Google Scholar 

  25. Proikakis CS, Mamouzelos NJ, Tarantili PA, Andreopoulos AG (2006) Polym Degrad Stabil 91:614–619

    Article  CAS  Google Scholar 

  26. Zhang X, Espiritu M, Bilyk A, Kurniawan L (2008) Polym Degrad Stabil 93:1964–1970

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.S., Pickering, K.L. & Foreman, N.J. Influence of Hygrothermal Ageing on the Physico-Mechanical Properties of Alkali Treated Industrial Hemp Fibre Reinforced Polylactic Acid Composites. J Polym Environ 18, 696–704 (2010). https://doi.org/10.1007/s10924-010-0225-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0225-9

Keywords

Navigation