Skip to main content

Advertisement

Log in

Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates

  • Review Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters that can potentially replace certain plastics derived from petroleum. PHAs can be produced using a combination of renewable feedstocks and biological methods. Native and recombinant microorganisms have been generally used for making PHAs via fermentation processes. As much as 90 % of the microbial dry mass may accumulate as PHAs. A range of PHAs has been produced using fermentation methods, including copolymers and block copolymers. Alternative production schemes based on genetically modified plants are becoming established and may become the preferred route for producing certain PHAs. Production in plants is likely to be inexpensive compared to production by fermentation, but it does not appear to be as versatile as microbial synthesis in terms of the range of products that may be generated. Cell-free enzymatic production of PHAs in vitro is receiving increasing attention and may become the preferred route to some specialty products. This review discusses the recent advances in production of polyhydroxyalkanoates by the various methods. Methods of recovering the polymer from microbial biomass are reviewed. Established and emerging applications of PHAs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATRP:

Atom transfer radical polymerization

CALB:

Candida antarctica lipase B

CSTR:

Continuous stirred tank reactor

DO:

Dissolved oxygen

DNA:

Deoxyribonucleic acid

DW:

Dry weight

cPHB:

Complexed poly-(R)-3-hydroxybutyrate

EDTA:

Ethylenediaminetetraacetic acid

FNL:

Fervidobacterium nodosum lipase (FNL)

HACoA:

HydroxyalkanoylCoA

HB:

Hydroxybutyrate

3HB:

3-Hydroxybutyrate, or 3-hydroxybutyric acid

4-HB:

4-Hydroxybutyrate

HEC:

Hydroxyethyl cellulose

HEMA:

2-Hydroxyethyl methacrylate

HHx:

Hydroxyhexanoate

HOPG:

Highly oriented pyrolytic graphite

HV:

Hydroxyvelarate

mcl-PHA:

Medium-chain-length PHA

NAD+ :

Nicotinamide adenine dinucleotide

NADH:

Reduced form of nicotinamide adenine dinucleotide

P3HB3HV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PANi:

Polyalanine

PCL:

ε-Caprolactone, or polycaprolactone

PDH:

Pyruvate dehydrogenase

PDL:

ω-Pentadecalactone

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydroxybutyric acid

PHBHHx:

Poly-3-hydroxybutyrate-co-3-hydroxyhexanoate

PHBV:

Polyhydroxybutyrate-co-valerate

PHBVHHx:

Poly-3-hydroxybutyrate-b-3-hydroxyvalerate-b-3-hydroxyhexanoate

PHF:

Polyhistidine

PHO:

Poly-3-hydroxyoctanoate

PLA:

Polylactide

PNIPAAm:

Poly(N-isopropyl acrylamide)

RAFT:

Reversible addition fragmentation chain transfer

(R)-LATP:

Thiophenyl (R)-lactate

(R)-3HBTP:

Thiophenyl (R)-3-hydroxylbutyrate

scCO2 :

Supercritical carbon dioxide

SDS:

Sodium dodecylsulfate

TMC:

Trimethylene carbonate

References

  1. Bauwens T (2011) First estimates suggest around 4% increase in plastics global production from 2010. Plastics Europe. http://www.plasticseurope.org/information-centre/press-room-1351/press-releases-2012/first-estimates-suggest-around-4-increase-in-plastics-global-production-from-2010.aspx. Accessed 18 July 2012

  2. Piet LPJ (2010) World-wide production of crude steel and plastics 1950–2010. Eindhoven University of Technology, Netherlands

    Google Scholar 

  3. Prieto MA (2007) From oil to bioplastics, a dream come true? J Bacteriol 189(2):289

    Article  CAS  Google Scholar 

  4. Ko-Sin N, Wong Y-M, Tsuge T, Sudesh K (2011) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha oil as the main carbon source. Process Biochem 46(8):1572–1578. doi:10.1016/j.procbio.2011.04.012

    Article  CAS  Google Scholar 

  5. Ni Y–Y, Kim DY, Chung MG, Lee SH, Park H-Y, Rhee YH (2010) Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16. Bioresour Technol 101(21):8485–8488. doi:10.1016/j.biortech.2010.06.033

    Article  CAS  Google Scholar 

  6. Hofer P, Vermette P, Groleau D (2011) Production and characterization of polyhydroxyalkanoates by recombinant Methylobacterium extorquens: combining desirable thermal properties with functionality. Biochem Eng J 54(1):26–33

    Article  CAS  Google Scholar 

  7. Abu-Elreesh G, Zaki S, Farag S, Elkady MF, Abd-El-Haleem D (2011) Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast. Afr J Biotechnol 10(34):6558–6563

    CAS  Google Scholar 

  8. Sabirova J, Golyshin P, Ferrer M, Lunsdorf H, Abraham W, Timmis K (2011) Extracellular polyhydroxyalkanoates produced by genetically engineered microorganisms. US Patent 20,110,183,388

  9. Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155(4):1690

    Article  CAS  Google Scholar 

  10. Brumbley S, Petrasovits LA, McQualter RA, Zhou L, Nielsen LK (2008) Sugarcane: an industrial crop for the production of polyhydroxyalkanoates. In: ComBio2008, Canberra, Australia, 21–25 Sept 2008

  11. Tilbrook K, Gebbie L, Schenk PM, Poirier Y, Brumbley SM (2011) Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnol J 9(9):958–969

    Article  CAS  Google Scholar 

  12. Van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54(4):684–701

    Article  CAS  Google Scholar 

  13. Otari S, Ghosh J (2009) Production and characterization of the polymer polyhydroxy butyrate-co-polyhydroxy valerate by Bacillus megaterium NCIM 2475. Curr Res J Biol Sci 1(2):23–26

    CAS  Google Scholar 

  14. Bhubalan K, Chuah JA, Shozui F, Brigham CJ, Taguchi S, Sinskey AJ, Rha CK, Sudesh K (2011) Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium sp. strain USM2. Appl Environ Microbiol 77(9):2926

    Article  CAS  Google Scholar 

  15. Kobayashi S (2010) Lipase-catalyzed polyester synthesis—a green polymer chemistry. Proc Jpn Acad Ser B 86(4):338–365

    Article  CAS  Google Scholar 

  16. Schultz A (2011) Consumers push plastics industry to find bio-based solutions. CNBC News. http://www.cnbc.com/id/42194558/Consumers_Push_Plastics_Industry_to_Find_Bio_Based_Solutions. Accessed 4 Aug 2011

  17. Mohan AM (2010) Biodegradable polymers market packaging world report. http://www.packworld.com/news-29339

  18. Gumel AM, Annuar MSM, Heidelberg T, Chisti Y (2011) Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate. Bioresour Technol 102(19):8727–8732

    Article  CAS  Google Scholar 

  19. Jiang Z (2011) Lipase-catalyzed copolymerization of dialkyl carbonate with 1, 4-butanediol and ω-pentadecalactone: synthesis of poly (ω-pentadecalactone-co-butylene-co-carbonate). Biomacromolecules 12:1912–1919

    Article  CAS  Google Scholar 

  20. Miletic N, Loos K, Gross RA (2011) Enzymatic polymerization of polyester. In: Katja L (ed) Biocatalysis in polymer chemistry. Wiley-VCH, pp 84–128

  21. Thomson N, Roy I, Summers D, Sivaniah E (2010) In vitro production of polyhydroxyalkanoates: achievements and applications. J Chem Technol Biotechnol 85(6):760–767

    Article  CAS  Google Scholar 

  22. Yao D, Li G, Kuila T, Li P, Kim NH, Kim SI, Lee JH (2011) Lipase catalyzed synthesis and characterization of biodegradable polyester containing l-malic acid unit in solvent system. J Appl Polym Sci 120(2):1114–1120

    Article  CAS  Google Scholar 

  23. Matos TD, King N, Simmons L, Walker C, McClain AR, Mahapatro A, Rispoli FJ, McDonnell KT, Shah V (2011) Microwave assisted lipase catalyzed solvent-free poly-ε-caprolactone synthesis. Green Chem Lett Rev 4(1):73–79

    Article  CAS  Google Scholar 

  24. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743

    Article  CAS  Google Scholar 

  25. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25(2):148–175

    Article  CAS  Google Scholar 

  26. Annuar MSM, Tan IKP, Ramachandran KB (2008) Evaluation of nitrogen sources for growth and production of medium-chain-length poly-(3-hydroxyalkanoates) from palm kernel oil by Pseudomonas putida PGA 1. Asia Pac J Mol Biol Biotechnol 16(1):11–15

    Google Scholar 

  27. Chanprateep S, Buasri K, Muangwong A, Utiswannakul P (2010) Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab 95(10):2003–2012. doi:10.1016/j.polymdegradstab.2010.07.014

    Article  CAS  Google Scholar 

  28. Franz A, Song HS, Ramkrishna D, Kienle A (2011) Experimental and theoretical analysis of poly ([beta]-hydroxybutyrate) formation and consumption in Ralstonia eutropha. Biochem Eng J 55(1):49–58

    Article  CAS  Google Scholar 

  29. Grothe E, Chisti Y (2000) Poly (ß-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioproc Biosys Eng 22(5):441–449

    Article  CAS  Google Scholar 

  30. Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly ([beta]-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb Technol 25(1–2):132–141

    Article  CAS  Google Scholar 

  31. Salim YS, Abdullah AA-A, Nasri CSSM, Ibrahim MNM (2011) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and characterisation of its blend with oil palm empty fruit bunch fibers. Bioresour Technol 102(3):3626–3628. doi:10.1016/j.biortech.2010.11.020

    Article  CAS  Google Scholar 

  32. Tian P, Shang L, Ren H, Mi Y, Fan D, Jiang M (2010) Biosynthesis of polyhydroxyalkanoates: current research and development. Afr J Biotechnol 8(5):709–714

    Google Scholar 

  33. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85(6):1687–1696

    Article  CAS  Google Scholar 

  34. Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, Lee YF (2011) Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl Microbiol Biotechnol 89(5):1373–1386

    Article  CAS  Google Scholar 

  35. Jensen TE, Sicko LM (1971) Fine structure of poly-{beta}-hydroxybutyric acid granules in a blue-green alga, Chlorogloea fritschii. J Bacteriol 106(2):683

    CAS  Google Scholar 

  36. Yan Q, Zhao M, Miao H, Ruan W, Song R (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour Technol 101(12):4508–4512. doi:10.1016/j.biortech.2010.01.073

    Article  CAS  Google Scholar 

  37. Gumel AM, Annuar MSM, Heidelberg T (2012) Effects of carbon substrates on biodegradable polymer composition and stability produced by Delftia tsuruhatensis Bet002 isolated from palm oil mill effluent. Polym Degrad Stab 97(8):1227–1231. doi:10.1016/j.polymdegradstab.2012.05.041

    Article  CAS  Google Scholar 

  38. Li Q, Li G, Yu S, Zhang Z, Ma F, Feng Y (2010) Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochem 46(1):253–257

    Article  CAS  Google Scholar 

  39. Rai R, Keshavarz T, Roether J, Boccaccini A, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Reports 72(3):29–47

    Article  CAS  Google Scholar 

  40. Ramalingam S, Vikram M, Vigneshbabu M, Sivasankari M (2011) Flux balance analysis for maximizing polyhydroxyalkanoate production in Pseudomonas putida. Indian J Biotechnol 10(1):70–74

    CAS  Google Scholar 

  41. Hori K, Ichinohe R, Unno H, Marsudi S (2011) Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J 53:196–202

    Article  CAS  Google Scholar 

  42. de Almeida A, Giordano AM, Nikel PI, Pettinari MJ (2010) Effects of aeration on the synthesis of poly (3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol 76(6):2036–2040

    Article  CAS  Google Scholar 

  43. Albuquerque MGE, Concas S, Bengtsson S, Reis MAM (2010) Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresour Technol 101(18):7112–7122. doi:10.1016/j.biortech.2010.04.019

    Article  CAS  Google Scholar 

  44. Albuquerque MGE, Martino V, Pollet E, Avérous L, Reis MAM (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151(1):66–76. doi:10.1016/j.jbiotec.2010.10.070

    Article  CAS  Google Scholar 

  45. Matsumoto K, Kobayashi H, Ikeda K, Komanoya T, Fukuoka A, Taguchi S (2011) Chemo-microbial conversion of cellulose into polyhydroxybutyrate through ruthenium-catalyzed hydrolysis of cellulose into glucose. Bioresour Technol 102:3564–3567

    Article  CAS  Google Scholar 

  46. Zúñiga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-[beta]-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190(1–3):876–882

    Article  CAS  Google Scholar 

  47. Xu Z, Chen H, Wu H, Li L (2010) 7 mT static magnetic exposure enhanced synthesis of poly-3-hydroxybutyrate by activated sludge at low temperature and high acetate concentration. Process Saf Environ Prot 88(4):292–296

    Article  CAS  Google Scholar 

  48. Shrivastav A, Mishra SK, Mishra S (2010) Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol 46(2):255–260

    Article  CAS  Google Scholar 

  49. Filippou PS, Koini EN, Calogeropoulou T, Kalliakmani P, Panagiotidis CA, Kyriakidis DA (2011) Regulation of the E. coli AtoSC two component system by synthetic biologically active 5, 7, 8-trimethyl-1, 4-benzoxazine analogues. Bioorg Med Chem 19(16):5061–5070

    Article  CAS  Google Scholar 

  50. Theodorou EC, Theodorou MC, Kyriakidis DA (2011) AtoSC two-component system is involved in cPHB biosynthesis through fatty acid metabolism in E. coli. BBA Gen Subj 1810(5):561–568

    Google Scholar 

  51. Theodorou EC, Theodorou MC, Samali MN, Kyriakidis DA (2011) Activation of the AtoSC two-component system in the absence of the AtoC N-terminal receiver domain in E. coli. Amino Acids 40(2):1–10

    Google Scholar 

  52. Jian J, Zhang SQ, Shi ZY, Wang W, Chen GQ, Wu Q (2010) Production of polyhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways. Appl Microbiol Biotechnol 87(6):1–10

    Google Scholar 

  53. Gao X, Chen JC, Wu Q, Chen GQ (2011) Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 22(6):768–774

    Article  CAS  Google Scholar 

  54. Kang Z, Du L, Kang J, Wang Y, Wang Q, Liang Q, Qi Q (2011) Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. Biores Technol 102(11):6600–6604

    Article  CAS  Google Scholar 

  55. Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13:11–17

    Article  CAS  Google Scholar 

  56. Chung AL, Jin HL, Huang LJ, Ye HM, Chen JC, Wu Q, Chen GQ (2011) Biosynthesis and characterization of Poly (3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12(10):3559–3566

    Article  CAS  Google Scholar 

  57. Bhubalan K, Rathi D-N, Abe H, Iwata T, Sudesh K (2010) Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym Degrad Stab 95(8):1436–1442. doi:10.1016/j.polymdegradstab.2009.12.018

  58. Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8(4):194–204

    Article  CAS  Google Scholar 

  59. Buelhamd A, Abd-El-Haleem D, Zaki S, Amara A, GMS A (2007) Genetic engineering of Schizosaccharomyces pombe to produce bacterial polyhydroxyalkanotes. J Appl Sci Environ Manag 11(2):83–90

    Google Scholar 

  60. Desuoky A, El-Haleem A, Zaki S, Abuelhamd A, Amara A, Aboelreesh G (2007) Biosynthesis of polyhydroxyalkanotes in wildtype yeasts. J Appl Sci Environ Manag 11(3):1119–8362

    Google Scholar 

  61. Sabirova JS, Haddouche R, Van Bogaert I, Mulaa F, Verstraete W, Timmis K, Schmidt Dannert C, Nicaud J, Soetaert W (2011) The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high value products. Microb Biotechnol 4(1):47–54

    Article  CAS  Google Scholar 

  62. Tamer IM, Moo-Young M, Chisti Y (1998) Disruption of Alcaligenes latus for recovery of poly (β-hydroxybutyric acid): comparison of high-pressure homogenization, bead milling, and chemically induced lysis. Ind Eng Chem Res 37(5):1807–1814

    Article  CAS  Google Scholar 

  63. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. eXPRESS Pol Lett 5(7):620–634. doi:10.3144/expresspolymlett.2011.60

  64. Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39(1):15–27. doi:10.1016/j.bej.2007.11.029

    Article  CAS  Google Scholar 

  65. Kulkarni SO, Kanekar PP, Jog JP, Patil PA, Nilegaonkar SS, Sarnaik SS, Kshirsagar PR (2011) Characterisation of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) produced by Halomonas campisalis (MCM B-1027), its biodegradability and potential application. Bioresour Technol 102(11):6625–6628. doi:10.1016/j.biortech.2011.03.054

    Article  CAS  Google Scholar 

  66. Rao U, Sridhar R, Sehgal PK (2010) Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49(1):13–20. doi:10.1016/j.bej.2009.11.005

    Article  CAS  Google Scholar 

  67. Allen AD, Anderson WA, Ayorinde FO, Eribo BE (2010) Biosynthesis and characterization of copolymer poly (3HB-co-3HV) from saponified Jatropha curcas oil by Pseudomonas oleovorans. J Ind Microbiol Biot 37(8):849–856

    Article  CAS  Google Scholar 

  68. López-Cuellar M, Alba-Flores J, Rodríguez J, Pérez-Guevara F (2011) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48(1):74–80

    Article  CAS  Google Scholar 

  69. Chardron S, Bruzaud S, Lignot B, Elain A, Sire O (2010) Characterization of bionanocomposites based on medium chain length polyhydroxyalkanoates synthesized by Pseudomonas oleovorans. Polym Test 29(8):966–971. doi:10.1016/j.polymertesting.2010.08.009

    Article  CAS  Google Scholar 

  70. Penloglou G, Chatzidoukas C, Kiparissides C (2012) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotechnol Adv 30(1):329–337. doi:10.1016/j.biotechadv.2011.06.021

  71. Samrot A, Avinesh R, Sukeetha S, Senthilkumar P (2011) Accumulation of poly[(R)-3-hydroxyalkanoates] in Enterobacter cloacae SU-1 during growth with two different carbon sources in batch culture. Appl Biochem Biotechnol 163(1):195–203. doi:10.1007/s12010-010-9028-7

    Article  CAS  Google Scholar 

  72. Yang YH, Brigham C, Willis L, Rha CK, Sinskey A (2011) Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnol Lett 1–6

  73. Lo C-W, Wu H-S, Wei Y-H (2011) High throughput study of separation of poly(3-hydroxybutyrate) from recombinant Escherichia coli XL1 blue. J Taiwan Inst Chem E 42(2):240–246. doi:10.1016/j.jtice.2010.08.001

    Article  CAS  Google Scholar 

  74. Kathiraser Y, Aroua MK, Ramachandran KB, Tan IKP (2007) Chemical characterization of medium chain length polyhydroxyalkanoates (PHAs) recovered by enzymatic treatment and ultrafiltration. J Chem Technol Biot 82(9):847–855

    Article  CAS  Google Scholar 

  75. Yasotha K, Aroua MK, Ramachandran KB, Tan IKP (2006) Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochem Eng J 30(3):260–268. doi:10.1016/j.bej.2006.05.008

    Article  CAS  Google Scholar 

  76. Horowitz DM, Brennan EM (2010) Methods for the separation and purification of biopolymers. European Patents 1(070):135

    Google Scholar 

  77. Darani KK, Reza Mozafari M (2010) Supercritical fluids technology in bioprocess industries: a review. J Biochem Technol 2(1):144–152

    Google Scholar 

  78. Khosravi-Darani K (2010) Research activities on supercritical fluid science in food biotechnology. Crit Rev Food Sci Nutr 50(6):479–488

    Article  CAS  Google Scholar 

  79. Posada JA, Naranjo JM, López JA, Higuita JC, Cardona CA (2011) Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochem 46(1):310–317. doi:10.1016/j.procbio.2010.09.003

    Article  CAS  Google Scholar 

  80. Reemmer J (2009) Advances in the synthesis and extraction of biodegradable polyhydroxyalkanoates in plant systems—a review. MMG 445 Basic Biotechnol eJ 5(1):44–49

    Google Scholar 

  81. Ariffin N, Abdullah R, Rashdan Muad M, Lourdes J, Emran NA, Ismail MR, Ismail I, Fadzil MFM, Ling KL, Siddiqui Y, Amir AA, Berahim Z, Husni Omar M (2011) Constructions of expression vectors of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) and transient expression of transgenes in immature oil palm embryos. Plasmid 66(3):136–143. doi:10.1016/j.plasmid.2011.07.002

    Google Scholar 

  82. Snell KD (2010) Multi-gene epression construct containing modified intein. European Patents 1(255):846

    Google Scholar 

  83. Börnke F, Broer I (2010) Tailoring plant metabolism for the production of novel polymers and platform chemicals. Curr Opin Plant Biol 13(3):353–361

    Article  CAS  Google Scholar 

  84. Poirier Y, Brumbley S (2010) Metabolic engineering of plants for the synthesis of polyhydroxyalkanaotes plastics from bacteria. In: Chen GG-Q (ed) vol 14. Microbiology Monographs. Springer Berlin / Heidelberg, pp 187–211. doi:10.1007/978-3-642-03287-5_8

  85. Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) Focus issue on plastid biology: high levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155(4):1690

    Article  CAS  Google Scholar 

  86. Matsumoto K, Morimoto K, Gohda A, Shimada H, Taguchi S (2010) Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. J Biosci Bioeng 111(4):485–488

    Article  CAS  Google Scholar 

  87. Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value added co product in an important lignocellulosic biomass crop. Plant Biotechnol J 6(7):663–678

    Article  CAS  Google Scholar 

  88. Kourtz L, Peoples OP, Snell KD (2010) Chemically inducible expression of biosynthetic pathways. US Patent App. 20,100/196,974

  89. Kourtz L, Dillon K, Daughtry S, Peoples OP, Snell KD (2007) Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Res 16(6):759–769

    Article  CAS  Google Scholar 

  90. Gogoi P, Hazarika S, Dutta N (2010) Kinetics and mechanism on laccase catalyzed synthesis of poly (allylamine) catechin conjugate. Chem Eng J 163(12):86–92

    Article  CAS  Google Scholar 

  91. Kadokawa J, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14(2):145–153

    Article  CAS  Google Scholar 

  92. Kim S, Silva C, Evtuguin DV, Gamelas JAF, Cavaco-Paulo A (2011) Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile dyeing. Appl Microb Biot 89(4):981–987

    Article  CAS  Google Scholar 

  93. Liu W, Chen B, Wang F, Tan T, Deng L (2011) Lipase-catalyzed synthesis of aliphatic polyesters and properties characterization. Process Biochem 46(10):1993–2000. doi:10.1016/j.procbio.2011.07.008

    Article  CAS  Google Scholar 

  94. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662

    Article  CAS  Google Scholar 

  95. Arumugasamy SK, Ahmad Z (2011) Candida antarctica as catalyst for polycaprolactone synthesis: effect of temperature and solvents. Asia Pac J Chem Eng 6:398–405. doi:10.1002/apj.583

    Article  CAS  Google Scholar 

  96. Gumel AM, Annuar MSM, Chisti Y, Heidelberg T (2012) Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate. Ultrason Sonochem 19(3):659–667

    Article  CAS  Google Scholar 

  97. Hunsen M, Azim A, Mang H, Wallner SR, Ronkvist A, WENCHUN X, Gross RA (2008) Cutinase: a powerful biocatalyst for polyester synthesis by polycondensation of diols and diacids and ROP of lactones. In: Polymer biocatalysis and biomaterials II, vol 999. ACS symposium series, vol 999. American Chemical Society, pp 263–274

  98. Feder D, Gross RA (2010) Exploring chain length selectivity in HIC-catalyzed polycondensation reactions. Biomacromolecules 11(3):690–697

    Article  CAS  Google Scholar 

  99. Takwa M, Hult K, Martinelle M (2008) Single-step, solvent-free enzymatic route to ω-functionalized polypentadecalactone macromonomers. Macromolecules 41(14):5230–5236

    Article  CAS  Google Scholar 

  100. Kakasi-Zsurka S, Todea A, But A, Paul C, Boeriu CG, Davidescu C, Nagy L, Kuki Á, Kéki S, Péter F (2011) Biocatalytic synthesis of new copolymers from 3-hydroxybutyric acid and a carbohydrate lactone. J Mol Catal B Enzym 71:22–28

    Article  CAS  Google Scholar 

  101. Veld M, Palmans A (2011) Hydrolases part I: enzyme mechanism, selectivity and control in the synthesis of well-defined polymers. In: Palmans ARA, Heise A (eds) Enzymatic polymerisation. Adv Polym Sci 237:55–78. doi:10.1007/12_2010_86

  102. Sato S, Minato M, Kikkawa Y, Abe H, Tsuge T (2010) In vitro synthesis of polyhydroxyalkanoate catalyzed by class II and III PHA synthases: a useful technique for surface coatings of a hydrophobic support with PHA. J Chem Technol Biot 85(6):779–782

    CAS  Google Scholar 

  103. Gumel AM, Annuar MSM, Heidelberg T, Chisti Y (2011) Lipase mediated synthesis of sugar fatty acid esters. Process Biochem 46:2079–2090

    Article  CAS  Google Scholar 

  104. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog Polym Sci 36(12):1754–1765

    Article  CAS  Google Scholar 

  105. Sosnik A, Gotelli G, Abraham GA (2011) Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful. Prog Polym Sci 36:1050–1078

    Article  CAS  Google Scholar 

  106. García-Arrazola R, López-Guerrero DA, Gimeno M, Bárzana E (2009) Lipase-catalyzed synthesis of poly-l-lactide using supercritical carbon dioxide. J Supercrit Fluid 51(2):197–201

    Article  CAS  Google Scholar 

  107. Matsuda T (2011) Asymmetric catalytic synthesis in supercritical fluids. Catal Meth Asym Synth 373–390

  108. Thurecht KJ, Villarroya S (2010) Biocatalytic polymerization in exotic solvents. In: Loos K (ed) Biocatalysis in polymer chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 323–348. doi:10.1002/9783527632534.ch13

  109. Gorke J, Srienc F, Kazlauskas R, Flickinger MC (2010) Enzyme-catalyzed reactions in ionic liquids. In: Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. Wiley, New York. doi:10.1002/9780470054581.eib271

  110. Mallakpour S, Dinari M (2011) High performance polymers in ionic liquid: a review on prospects for green polymer chemistry. Part II: polyimides and polyesters. Iranian Polym J 20(4):259–279

    CAS  Google Scholar 

  111. Kundu S, Bhangale AS, Wallace WE, Flynn KM, Guttman CM, Gross RA, Beers KL (2011) Continuous flow enzyme-catalyzed polymerization in a microreactor. J Am Chem Soc 133(15):6006–6011

    Article  CAS  Google Scholar 

  112. Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101(10):3628–3634

    Article  CAS  Google Scholar 

  113. Takwa M, Larsen MW, Hult K, Martinelle M (2011) Rational redesign of Candida antarctica lipase B for the ring opening polymerization of d, d-lactide. Chem Comm 47:7392–7394

    Article  CAS  Google Scholar 

  114. Karagoz B, Bayramoglu G, Altintas B, Bicak N, Arica MY (2010) Poly (glycidyl methacrylate)-polystyrene diblocks copolymer grafted nanocomposite microspheres from surface-initiated atom transfer radical polymerization for lipase immobilization: application in flavor ester synthesis. Ind Eng Chem Res 49(20):9655–9665

    Article  CAS  Google Scholar 

  115. López-Luna A, Gallegos JL, Gimeno M, Vivaldo-Lima E, Bárzana E (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67(1–2):143–149. doi:10.1016/j.molcatb.2010.07.020

    Article  CAS  Google Scholar 

  116. Han S-Y, Zhang J-H, Han Z-l, Zheng S-P, Lin Y (2011) Combination of site-directed mutagenesis and yeast surface display enhances Rhizomucor miehei lipase esterification activity in organic solvent. Biotechnol Lett 33(12):2431–2438. doi:10.1007/s10529-011-0705-6

    Article  CAS  Google Scholar 

  117. Palmans ARA, van As BAC, van Buijtenen J, Meijer E (2008) Ring-opening of ω-substituted lactones by Novozym 435: selectivity issues and application to iterative tandem catalysis. In: Polymer biocatalysis and biomaterials II, vol 999. American Chemical Society Publications, pp 230–244

  118. Sha K, Li D, Li Y, Zhang B, Wang J (2008) The chemoenzymatic synthesis of a novel CBABC-type pentablock copolymer and its self-assembled “crew-cut” aggregation. Macromolecules 41(2):361–371

    Article  CAS  Google Scholar 

  119. Zhang B, Li Y, Xu Y, Wang S, Ma L, Wang J (2008) Chemozymatic synthesis and characterization of H-shaped triblock copolymer. Polym Bull 60(6):733–740. doi:10.1007/s00289-008-0906-x

    Article  CAS  Google Scholar 

  120. Zhang B, Li Y, Wang W, Wang J, Chen X (2011) ABA 2-type triblock copolymer composed of PCL and PSt: synthesis and characterization. Polym Bull 67(8):1507–1518

    Article  CAS  Google Scholar 

  121. Xue L, Dai S, Li Z (2010) Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 31(32):8132–8140

    Article  CAS  Google Scholar 

  122. de Geus M, Palmans Anja RA, Duxbury Christopher J, Villarroya S, Howdle Steven M, Heise A (2008) Chemoenzymatic synthesis of block copolymers. In: Polymer biocatalysis and biomaterials II, vol 999. ACS symposium series, vol 999. American Chemical Society, pp 216–229. doi:10.1021/bk-2008-0999.ch014

  123. Tajima K, Satoh Y, Satoh T, Itoh R, Han X, Taguchi S, Kakuchi T, Munekata M (2009) Chemo-enzymatic synthesis of poly (lactate-co-(3-hydroxybutyrate)) by a lactate-polymerizing enzyme. Macromolecules 42(6):1985–1989

    Article  CAS  Google Scholar 

  124. Han X, Satoh Y, Tajima K, Matsushima T, Munekata M (2009) Chemo-enzymatic synthesis of polyhydroxyalkanoate by an improved two-phase reaction system (TPRS). J Biosci Bioeng 108(6):517–523

    Article  CAS  Google Scholar 

  125. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280. doi:10.1016/j.progpolymsci.2011.06.004

    Article  CAS  Google Scholar 

  126. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35(1–2):174–211

    Article  CAS  Google Scholar 

  127. Jocić D, Tourrette A, Lavrić PK (2010) Biopolymer-based stimuli-responsive polymeric systems for functional finishing of textiles. In: Elnashar MM (ed) Biopolymers. Sciyo, Croatia, pp 37–40. doi:10.5772/286

  128. Xu F, Yan TT, Luo YL (2011) Synthesis and micellization of thermosensitive PNIPAAm-b-PLA amphiphilic block copolymers based on a bifunctional initiator. Macromol Res 19(12):1287–1295

    Article  CAS  Google Scholar 

  129. Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10(2):197–209

    Article  CAS  Google Scholar 

  130. Bawa P, Pillay V, Choonara YE, du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4:022001

    Article  CAS  Google Scholar 

  131. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nature Mater 9(2):101–113

    Article  CAS  Google Scholar 

  132. Cui W, Qi M, Li X, Huang S, Zhou S, Weng J (2008) Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int J Pharm 361(1–2):47–55

    CAS  Google Scholar 

  133. Barinov V, Dabrowski R, Levon K (2006) Methods and apparatus for modifying gel adhesion strength. WO Patent WO/2006/050,340

  134. Costa RR, Custódio CA, Arias FJ, Rodríguez-Cabello JC, Mano JF (2011) Layer-by-layer assembly of chitosan and recombinant biopolymers into biomimetic coatings with multiple stimuli-responsive properties. Small 7(18):2640–2649

    Article  CAS  Google Scholar 

  135. Loh XJ, Cheong WCD, Li J, Ito Y (2009) Novel poly (N-isopropylacrylamide)-poly [(R)-3-hydroxybutyrate]-poly (N-isopropylacrylamide) triblock copolymer surface as a culture substrate for human mesenchymal stem cells. Soft Matter 5(15):2937–2946

    Article  CAS  Google Scholar 

  136. Zhu JL, Zhang XZ, Cheng H, Li YY, Cheng SX, Zhuo RX (2007) Synthesis and characterization of well-defined, amphiphilic poly (N-isopropylacrylamide)-b-[2-hydroxyethyl methacrylate-poly (ϵ-caprolactone)]n graft copolymers by RAFT polymerization and macromonomer method. J Polym Sci, Part A: Polym Chem 45(22):5354–5364

    Article  CAS  Google Scholar 

  137. Yin H, Lee ES, Kim D, Lee KH, Oh KT, Bae YH (2008) Physicochemical characteristics of pH-sensitive poly (l-histidine)-b-poly (ethylene glycol)/poly (l-lactide)-b-poly (ethylene glycol) mixed micelles. J Control Release 126(2):130–138

    Article  CAS  Google Scholar 

  138. Guo Y, Li M, Mylonakis A, Han J, MacDiarmid AG, Chen X, Lelkes PI, Wei Y (2007) Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications. Biomacromolecules 8(10):3025–3034

    Article  CAS  Google Scholar 

  139. Wei Y, Lelkes PI, MacDiarmid AG, Guterman E, Cheng S, Palouian K, Bidez P (2004) Electroactive polymers and nanostructured materials for neural tissue engineering. In: Qifeng Z, Cheng SZD (eds) Contemporary topics in advanced polymer science and technology. Peking University Press, Beijing, China, pp 430–436

  140. Yamamoto H, Kitsuki T, Nishida A, Asada K, Ohkawa K (1999) Photoresponsive peptide and polypeptide systems. 13. Photoinduced cross-linked gel and biodegradation properties of copoly-(l-lysine) containing ε-7-Coumaryloxyacetyl-l-lysine residues. Macromolecules 32(4):1055–1061

    Article  CAS  Google Scholar 

  141. Kwon IK, Matsuda T (2005) Photo-polymerized microarchitectural constructs prepared by microstereolithography (μSL) using liquid acrylate-end-capped trimethylene carbonate-based prepolymers. Biomaterials 26(14):1675–1684

    Article  CAS  Google Scholar 

  142. Gupta H, Wilkinson RA, Bogdanov AA Jr, Callahan RJ, Weissleder R (1995) Inflammation: imaging with methoxy poly(ethylene glycol)-poly-l-lysine-DTPA, a long-circulating graft copolymer. Radiology 197(3):665–669

    CAS  Google Scholar 

  143. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73(9):2432–2443

    Article  CAS  Google Scholar 

  144. Jiang C, Wang X, Sun P, Yang C (2011) Synthesis and solution behavior of poly (ε-caprolactone) grafted hydroxyethyl cellulose copolymers. Int J Biol Macromol 48(1):210–214

    Article  CAS  Google Scholar 

  145. Lu D, Wu Q, Lin X (2002) Chemoenzymatic synthesis of biodegradable poly (1′-O-vinyladipoyl-sucrose). Chinese J Polym Sci 20(6):579–584

    CAS  Google Scholar 

  146. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4):403–440. doi:10.1016/j.progpolymsci.2010.01.006

    Article  CAS  Google Scholar 

  147. Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC (2011) Advanced drug-delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res 4:1158

    Article  CAS  Google Scholar 

  148. Gaucher G, Marchessault RH, Leroux JC (2010) Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 143(1):2–12

    Article  CAS  Google Scholar 

  149. Kiliçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB (2011) Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (Phbhhx) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44(3):310–320. doi:10.1016/j.ejps.2011.08.013

    Article  CAS  Google Scholar 

  150. Lee J, Jung S-G, Park C-S, Kim H-Y, Batt CA, Kim Y-R (2011) Tumor-specific hybrid polyhydroxybutyrate nanoparticle: surface modification of nanoparticle by enzymatically synthesized functional block copolymer. Bioorg Med Chem Lett 21(10):2941–2944. doi:10.1016/j.bmcl.2011.03.058

    Article  CAS  Google Scholar 

  151. Zawidlak-Wegrzynska B, Kawalec M, Bosek I, Luczyk-Juzwa M, Adamus G, Rusin A, Filipczak P, Glowala-Kosinska M, Wolanska K, Krawczyk Z (2010) Synthesis and antiproliferative properties of ibuprofen-oligo (3-hydroxybutyrate) conjugates. Eur J Med Chem 45(5):1833–1842

    Article  CAS  Google Scholar 

  152. Francis L (2011) Biosynthesis of polyhydroxyalkanoates and their medical applications. University of Westminster, Westminster

    Google Scholar 

  153. Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 152:168–172

    Article  CAS  Google Scholar 

  154. Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141. doi:10.1007/s10534-010-9381-6

    Google Scholar 

  155. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  CAS  Google Scholar 

  156. Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162(5):542–549

    Article  CAS  Google Scholar 

  157. Phukon P, Saikia JP, Konwar BK (2011) Enhancing the stability of colloidal silver nanoparticles using polyhydroxyalkanoates (PHA) from Bacillus circulans (MTCC 8167) isolated from crude oil contaminated soil. Colloids Surf B Biointerfaces 86(2):314–318. doi:10.1016/j.colsurfb.2011.04.014

    Article  CAS  Google Scholar 

  158. Zhou J, Peng S-W, Wang Y–Y, Zheng S-B, Wang Y, Chen G-Q (2010) The use of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tarsal repair in eyelid reconstruction in the rat. Biomaterials 31(29):7512–7518. doi:10.1016/j.biomaterials.2010.06.044

    Article  CAS  Google Scholar 

  159. Yan C, Wang Y, Shen X-Y, Yang G, Jian J, Wang H-S, Chen G-Q, Wu Q (2011) MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials 32(27):6435–6444. doi:10.1016/j.biomaterials.2011.05.031

    Article  CAS  Google Scholar 

  160. Wang L, Wang Z-H, Shen C-Y, You M-L, Xiao J-F, Chen G-Q (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31(7):1691–1698. doi:10.1016/j.biomaterials.2009.11.053

    Article  CAS  Google Scholar 

  161. Butcher JT, Mahler GJ, Hockaday LA (2011) Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Del Rev 63:242–268

    Article  CAS  Google Scholar 

  162. Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F (2011) Substrates for cardiovascular tissue engineering. Adv Drug Del Rev 63:221–241

    Article  CAS  Google Scholar 

  163. Wei XW, Gong CY, Gou ML, Fu SZ, Guo QF, Shi S, Luo F, Guo G, Qiu LY, Qian ZY (2009) Biodegradable poly (ε-caprolactone)-poly (ethylene glycol) copolymers as drug delivery system. Int J Pharm 381(1):1–18

    Article  CAS  Google Scholar 

  164. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  CAS  Google Scholar 

  165. Patel A, Velikov K (2011) Colloidal delivery systems in foods: a general comparison with oral drug delivery. LWT Food Sci Technol 44(9):1958–1964

    Article  CAS  Google Scholar 

  166. Riekes MK, Barboza FM, Vecchia DD, Bohatch M Jr, Farago PV, Fernandes D, Silva MAS, Stulzer HK (2011) Evaluation of oral carvedilol microparticles prepared by simple emulsion technique using poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone as polymers. Mater Sci Eng C 31(5):962–968

    Article  CAS  Google Scholar 

  167. Öztürk F, Ermertcan AT (2011) Wound healing: a new approach to the topical wound care. Cutan Ocul Toxicol 30(2):92–99

    Article  Google Scholar 

  168. Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y (2011) Hyaluronic acid nanofiber wound dressing—production, characterization, and in vivo behavior. J Biomed Mater Res Part B Appl Biomater 97B(1):20–29

    Article  CAS  Google Scholar 

  169. Bodmeier R (2011) Implants particles. US Patents

  170. Howe J (2011) Suture anchor inserter. US Patents

  171. Bansal SS, Vadhanam MV, Gupta RC (2011) Development and in vitro-in vivo evaluation of polymeric implants for continuous systemic delivery of curcumin. Pharm Res 28(5):1121–1130

    Article  CAS  Google Scholar 

  172. Waknis V, Jonnalagadda S (2011) Novel poly-dl-lactide-polycaprolactone copolymer based flexible drug delivery system for sustained release of ciprofloxacin. Drug Deliv 18(4):236–245

    Article  CAS  Google Scholar 

  173. Wong VG, Wood LL (2011) Conveniently implantable sustained release drug compositions. US Patents

  174. Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK (2011) Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomed Mater 6:015009

    Article  CAS  Google Scholar 

  175. Williams SF, Martin DP, Gerngross T, Horowitz DM (2011) Polyhydroxyalkanoates for in vivo applications. US Patents

  176. Williams SF, Martin DP, Gerngross T, Horowitz DM (2011) Medical device comprising polyhydroxyalkanoate having pyrogen removed. US Patents

  177. Woodruff MA, Hutmacher DW (2010) Resorbable composite scaffolds for bone tissue engineering. In: Tissue and cell engineering society (TCES), Manchester, 28–30 July 2010. TCES

  178. Pillai CKS, Sharma CP (2010) Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25(4):291–366. doi:10.1177/0885328210384890

    Article  CAS  Google Scholar 

  179. Wang SY, Wang Z, Liu MM, Xu Y, Zhang XJ, Chen GQ (2010) Properties of a new gasoline oxygenate blend component: 3-hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenerg 34(8):1216–1222

    Article  CAS  Google Scholar 

  180. Zhang X, Luo R, Wang Z, Deng Y, Chen GQ (2009) Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules 10(4):707–711

    Article  CAS  Google Scholar 

  181. Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993. doi:10.1021/bm9014667

    Article  CAS  Google Scholar 

  182. Modi S, Koelling K, Vodovotz Y (2011) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J 47:179–186

    Article  CAS  Google Scholar 

  183. Johansson C (2011) Bio-nanocomposites for food packaging applications. Nanocomposites with biodegradable polymers: synthesis, properties, and future perspectives. Oxford University Press, UK

  184. Del Nobile MA, Conte A, Buonocore GG, Incoronato AL, Massaro A, Panza O (2009) Active packaging by extrusion processing of recyclable and biodegradable polymers. J Food Eng 93(1):1–6

    Article  CAS  Google Scholar 

  185. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  186. De Schryver P, Dierckens K, Bahn Thi QQ, Amalia R, Marzorati M, Bossier P, Boon N, Verstraete W (2011) Convergent dynamics of the juvenile European sea bass gut microbiota induced by polyhydroxybutyrate. Environ Microbiol 13(4):1042–1051

    Article  CAS  Google Scholar 

  187. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14(3):251–258

    Article  Google Scholar 

  188. Nhan DT, Wille M, De Schryver P, Defoirdt T, Bossier P, Sorgeloos P (2010) The effect of poly [beta]-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302(1–2):76–81. doi:10.1016/j.aquaculture.2010.02.011

    Article  CAS  Google Scholar 

  189. Grillo R, AdES Pereira, de Melo NFS, Porto RM, Feitosa LO, Tonello PS, Filho NLD, Rosa AH, Lima R, Fraceto LF (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186(2–3):1645–1651. doi:10.1016/j.jhazmat.2010.12.044

    Article  CAS  Google Scholar 

  190. Zhang X, Wei C, He Q, Ren Y (2010) Enrichment of chlorobenzene and o-nitrochlorobenzene on biomimetic adsorbent prepared by poly-3-hydroxybutyrate (PHB). J Hazard Mater 177(1–3):508–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

University of Malaya is acknowledged for supporting this work through the research grants RG165-11AFR and UM.C/625/1/HIR/MOHE/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. M. Annuar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumel, A.M., Annuar, M.S.M. & Chisti, Y. Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. J Polym Environ 21, 580–605 (2013). https://doi.org/10.1007/s10924-012-0527-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0527-1

Keywords

Navigation