Skip to main content
Log in

Effect of Varying Filler Concentration on Zinc Oxide Nanoparticle Embedded Chitosan Films as Potential Food Packaging Material

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Prevailing scenario of non-biodegradable food packaging materials worldwide was the motivation for this research. More than half of the packaging materials used today are non-biodegradable and lack one or the other feature that keeps it from being an ideal food packaging material. Based on the current need of food grade packaging materials, the present study illustrates the amelioration of the properties of biodegradable chitosan films with the incorporation of zinc oxide (ZnO) nanoparticles in varying concentration. The ZnO nanoparticles (ZnONPs) used as fillers in the chitosan films were synthesized by supersaturation method. They were characterized using UV–visible spectrophotometry, X-ray diffraction and field emission scanning electron microscopy (FE-SEM). The particles were observed to be around 100–200 nm in size. The chitosan films with varying concentration of ZnONPs were synthesized and characterized using Fourier transform infrared spectroscopy and FE-SEM. The films were studied for their thermal stability, water vapor transmission rate (WVTR) and mechanical properties. The thermal stability, as determined by Thermo Gravimetric Analysis and Differential Scanning Calorimetry increased slightly with increasing percentage of embedded ZnONPs while a substantial decrease in WVTR was observed. Mechanical properties also showed improvements with 77% increment in tensile modulus and 67% increment in tensile strength. The antimicrobial activity of the films was also studied on gram positive bacterium Bacillus subtilis (B. subtilis) and gram negative bacterium Escherichia coli (E. coli) by serial dilution method. A twofold and 1.5-fold increment in the antimicrobial activity was observed for B. subtilis and E. coli, respectively, with increased ZnONPs concentration in the films from 0(w/w) to 2%(w/w). Films thus prepared can prove to be of immense potential in the near future for antimicrobial food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues: scientific status summary. J Food Sci 72:R39–R55. doi:10.1111/j.1750-3841.2007.00301.x

    Article  CAS  Google Scholar 

  2. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126. doi:10.1016/S1466-8564(02)00012-7

    Article  CAS  Google Scholar 

  3. Lau O-W, Wong S-K (2000) Contamination in food from packaging material. J Chromatogr A 882:255–270. doi:10.1016/S0021-9673(00)00356-3

    Article  CAS  Google Scholar 

  4. Us EPA (2014) Municipal solid waste generation, recycling, and disposal in the United States: facts and figures for 2012. US Environ Prot Agency 1–13

  5. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. doi:10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  6. Sharmin N, Khan RA, Salmieri S, Dussault D, Lacroix M (2012) Fabrication and characterization of biodegradable composite films made of using poly(caprolactone) reinforced with chitosan. J Polym Environ 20:698–705. doi:10.1007/s10924-012-0431-8

    Article  CAS  Google Scholar 

  7. Sila A, Mlaik N, Sayari N, Balti R, Bougatef A (2014) Chitin and chitosan extracted from shrimp waste using fish proteases aided process: efficiency of chitosan in the treatment of unhairing effluents. J Polym Environ 22:78–87. doi:10.1007/s10924-013-0598-7

    Article  CAS  Google Scholar 

  8. Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. doi:10.1016/S1381-5148(00)00038-9

    Article  Google Scholar 

  9. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT Food Sci Technol 43:837–842. doi:10.1016/j.lwt.2010.01.021

    Article  CAS  Google Scholar 

  10. Lim S-H, Hudson SM (2003) Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci Part C Polym Rev 43:223–269. doi:10.1081/MC-120020161

    Article  Google Scholar 

  11. Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Eslabee MZ (2011) Enhancement and characterization of chitosan extraction from the wastes of shrimp packaging plants. J Polym Environ 19:776–783. doi:10.1007/s10924-011-0321-5

    Article  CAS  Google Scholar 

  12. Küçükgülmez A, Gülnaz O, Celik M, Yanar Y, Kadak AE, Gercek G (2012) Antimicrobial activity of the chitosan extracted from metapenaeus stebbingi shell wastes. J Polym Environ 20:431–437. doi:10.1007/s10924-011-0395-0

    Article  Google Scholar 

  13. Cota-Arriola O, Cortez-Rocha MO, Ezquerra-Brauer JM, Lizardi-Mendoza J, Burgos-Hernandez A, Robles-Sanchez RM, Plascencia-Jatomea M (2013) Ultrastructural, morphological, and antifungal properties of micro and nanoparticles of chitosan crosslinked with sodium tripolyphosphate. J Polym Environ 21:971–980. doi:10.1007/s10924-013-0583-1

    Article  CAS  Google Scholar 

  14. Durango AM, Soares NFF, Benevides S, Teixeira J, Carvalho M, Wobeto C, Andrade NJ (2006) Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Packag Technol Sci 19:55–59. doi:10.1002/pts.713

    Article  CAS  Google Scholar 

  15. Yingyuad S, Ruamsin S, Reekprkhon D, Douglas S, Pongamphai S, Siripatrawan U (2006) Effect of chitosan coating and vacuum packaging on the quality of refrigerated grilled pork. Packag Technol Sci 19:149–157. doi:10.1002/pts.717

    Article  CAS  Google Scholar 

  16. Joerger RD, Sabesan S, Visioli D, Urian D, Joerger MC (2009) Antimicrobial activity of chitosan attached to ethylene copolymer films. Packag Technol Sci 22:125–138. doi:10.1002/pts.822

    Article  CAS  Google Scholar 

  17. Gällstedt M, Brottmon A, Hedenqvist MS (2005) Packaging-related properties of protein- and chitosan-coated paper. Packag Technol Sci 18:161–170. doi:10.1002/pts.685

    Article  Google Scholar 

  18. Rani M, Agarwal A, Negi YS (2010) Review: chitosan based hydrogel polymeric beads—as drug delivery system. BioResources 5:2765–2807. doi:10.15376/biores.5.4.2765-2807

    Google Scholar 

  19. Castillo L, Lopez O, Lopez C, Zaritzky N, Garcia MA, Barbosa S, Villar M (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohydr Polym 95:664–674. doi:10.1016/j.carbpol.2013.03.026

    Article  CAS  Google Scholar 

  20. Yoshida CMP, Oliveira EN, Franco TT (2009) Chitosan tailor-made films: the effects of additives on barrier and mechanical properties. Packag Technol Sci 22:161–170. doi:10.1002/pts.839

    Article  CAS  Google Scholar 

  21. Caner C, Vergano PJ, Wiles JL (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63:1049–1053. doi:10.1111/j.1365-2621.1998.tb15852.x

    Article  CAS  Google Scholar 

  22. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95. doi:10.1016/j.tifs.2006.09.004

    Article  CAS  Google Scholar 

  23. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516. doi:10.1016/j.compscitech.2004.11.003

    Article  CAS  Google Scholar 

  24. Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer (Guildf) 42:1083–1094. doi:10.1016/S0032-3861(00)00380-3

    Article  CAS  Google Scholar 

  25. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49. doi:10.1111/j.1750-3841.2009.01456.x

    Article  Google Scholar 

  26. Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles—a review. Text Res J 80:1721–1737. doi:10.1177/0040517510363193

    Article  CAS  Google Scholar 

  27. Sharma RK, Tahiliani S, Jain N, Priyadarshi R, Chhangani S, Purohit SD, Joshi P (2013) Cynodon dactylon leaf extract assisted green synthesis of silver nanoparticles and Their anti-microbial activity. Adv Sci Eng Med 5:858–863. doi:10.1166/asem.2013.1352

    Article  CAS  Google Scholar 

  28. Espitia PJP, Soares NFF, Coimbra JSR, Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464. doi:10.1007/s11947-012-0797-6

    Article  CAS  Google Scholar 

  29. Moroni M, Borrini D, Calamai L, Dei L (2005) Ceramic nanomaterials from aqueous and 1, 2-ethanediol supersaturated solutions at high temperature. J Colloid Interface Sci 286:543–550. doi:10.1016/j.jcis.2005.01.097

    Article  CAS  Google Scholar 

  30. Khalid MN, Agnely F, Yagoubi N, Grossiord JL, Couarraze G (2002) Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci 15:425–432. doi:10.1016/S0928-0987(02)00029-5

    Article  CAS  Google Scholar 

  31. Suyatma NE, Tighzert L, Copinet A, Coma V (2005) Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957. doi:10.1021/jf048790

    Article  CAS  Google Scholar 

  32. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344:2375–2382. doi:10.1016/j.carres.2009.09.001

    Article  CAS  Google Scholar 

  33. Shoeb M, Singh BR, Mobin M, Afreen G, Khan W, Naqvi AM (2015) Kinetic study on mutagenic chemical degradation through three pot synthesiszed graphene @ ZnO nanocomposite. PLoS ONE. doi:10.1371/journal.pone.0135055

    Google Scholar 

  34. Haase M, Weller H, Henglein A (1988) Photochemistry and radiation chemistry of colloldal semiconductors. 23. electron storage on ZnO particles and size quantization. J Phys Chem 92:482–487

    Article  CAS  Google Scholar 

  35. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7:184–192. doi:10.1016/j.nano.2010.10.001

    Article  CAS  Google Scholar 

  36. Lee S, Jeong S, Kim D, Hwang S, Jeon M, Moon J (2008) ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattice Microst 43:330–339. doi:10.1016/j.spmi.2008.01.004

    Article  CAS  Google Scholar 

  37. Martinez-Camacho AP, Cortez-Rocha MO, Ezquerra-Brauer JM, Garciano-Verdugo AZ, Rodriguez-Felix F, Castillo-Ortega MM, Yepiz-Gomez MS, Plascencia Jatomea M (2010) Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydr Polym 82:305–315. doi:10.1016/j.carbpol.2010.04.069

    Article  CAS  Google Scholar 

  38. Li Y, Wu K, Zhitomirsky I (2010) Electrodeposition of composite zinc oxide–chitosan films. Coll Surf A Physicochem Eng Asp 356:63–70. doi:10.1016/j.colsurfa.2009.12.037

    Article  CAS  Google Scholar 

  39. Perelshtein I, Ruderman E, Perkas N, Tzanov T, Beddow J, Joyce E, Mason TJ, Blanes M, Molla K, Patlolla A, Frenkel AI, Gedanken A (2013) Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B 1:1968–1976. doi:10.1039/c3tb00555k

    Article  CAS  Google Scholar 

  40. Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S (2010) Novel biocompatible composite (Chitosan-zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Coll Surf B Biointerfaces 80:86–93. doi:10.1016/j.colsurfb.2010.05.039

    Article  CAS  Google Scholar 

  41. Vicentini DS, Smania A, Laranjeira MCM (2010) Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng, C 30:503–508. doi:10.1016/j.msec.2009.01.026

    Article  CAS  Google Scholar 

  42. Hollifield HC, Begley TH (1996) Approaches to evaluating high-temperature food packaging materials as sources of food contamination. In: Gilbert J (ed) Prog Food Contam Anal, 1st edn. Springer, New York, pp 332–367

    Chapter  Google Scholar 

  43. Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056. doi:10.1016/S0032-3861(00)00067-7

    Article  CAS  Google Scholar 

  44. Aguirre-Loredo RY, Rodríguez-Hernández AI, Morales-Sánchez E, Gomez-Aldapa CA, Velazquez G (2016) Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem 196:560–566. doi:10.1016/j.foodchem.2015.09.065

    Article  CAS  Google Scholar 

  45. Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111:343–350. doi:10.1016/j.jfoodeng.2012.02.012

    Article  CAS  Google Scholar 

  46. Rubilar JF, Cruz RMS, Silva HD, Vicente AA, Khmelinskii I, Vieira MC (2013) Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J Food Eng 115:466–474. doi:10.1016/j.jfoodeng.2012.07.009

    Article  CAS  Google Scholar 

  47. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652. doi:10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  48. Rhim J, Hong S, Park H, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  49. Li X, Li X, Ke B, Shi X, Du Y (2011) Cooperative performance of chitin whisker and rectorite fillers on chitosan films. Carbohydr Polym 85:747–752. doi:10.1016/j.carbpol.2011.03.040

    Article  CAS  Google Scholar 

  50. Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr Polym 83:1908–1915. doi:10.1016/j.carbpol.2010.10.054

    Article  CAS  Google Scholar 

  51. Wang S-F, Shen L, Zhang W-D, Tong Y-J (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072. doi:10.1021/bm050378v

    Article  CAS  Google Scholar 

  52. Giannelis E (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35. doi:10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  53. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. doi:10.1021/bm034130m

    Article  CAS  Google Scholar 

  54. Tayel AA, Moussa S, Opwis K, Knittel D, Schollmeyer E, Nickisch-Hartfiel A (2010) Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol 47:10–14. doi:10.1016/j.ijbiomac.2010.04.005

    Article  CAS  Google Scholar 

  55. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. doi:10.1016/j.ijfoodmicro.2010.09.012

    Article  CAS  Google Scholar 

  56. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182. doi:10.1016/j.foodchem.2008.11.047

    Article  CAS  Google Scholar 

  57. Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645. doi:10.1007/s12034-006-0017-y

    Article  CAS  Google Scholar 

  58. Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Effect of ceramic powders on spores of Bacillus subtilis. J Chem Eng Japan 28:556–561. doi:10.1252/jcej.28.556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Human Resource and Development, Government of India, for providing the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuvraj Singh Negi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshi, R., Negi, Y.S. Effect of Varying Filler Concentration on Zinc Oxide Nanoparticle Embedded Chitosan Films as Potential Food Packaging Material. J Polym Environ 25, 1087–1098 (2017). https://doi.org/10.1007/s10924-016-0890-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0890-4

Keywords

Navigation