Skip to main content
Log in

All Natural High-Density Fiber- and Particleboards from Hemp Fibers or Rice Husk Particles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the present study, long hemp fibers and rice husk particles have been used for producing all natural-based boards for building, automotive and in-door furniture, employing a simple and economic transformation process (namely, compression molding). In order to have the required consistence and mechanical strength, cornstarch was employed as binder. By this way, fiber- and particleboards have been prepared and characterized in terms of morphology, mechanical properties (flexural modulus and strength). The influence of different relative humidity levels on composite storage modulus and heat deflection temperatures has been investigated, as well. Long fibers turned out to be capable of sustaining approximately three times the load with respect to particles in standard conditions. Thermal, hygro- and photo stability of the above materials have been investigated under three ageing conditions: namely, (i) high temperature (thermal ageing), (ii) humidity plus high temperature (hygro-thermal ageing) and (iii) UV radiations (photo ageing). Regardless of the experimental ageing conditions adopted, fiberboards have shown good mechanical stability with a modest decrease of storage modulus (<20%) with respect to the values before exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lubin G (2013) Handbook of composites. Springer Science & Business Media, New York

    Google Scholar 

  2. Hon D (1992) Polym News 17:102

    CAS  Google Scholar 

  3. Hon DN (1988) Polym News 13:34–140.

    Google Scholar 

  4. Fakirov S, Bhattacharyya D (2015) Engineering biopolymers: homopolymers, blends, and composites Carl Hanser Verlag GmbH Co KG, Munich

    Google Scholar 

  5. Koronis G, Silva A, Fontul M (2013) Composites Part B 44:120

    Article  CAS  Google Scholar 

  6. Alkbir MFM, Sapuan SM, Nuraini AA, Ishak MR (2016) Compos Struct 148:59–73

    Article  Google Scholar 

  7. John MJ, Thomas S (2008) Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  8. Temitope AK Ind Eng Manag 04 (2015)

  9. Zach J, Hroudova J, Brozovsky J, Krejza Z, Gailius A (2013) Proced. Eng 57:1288–1294

    Article  Google Scholar 

  10. Melo RRD, Stangerlin DM, Santana RRC, Pedrosa TD (2014) Mater Res 17:682–686

    Article  Google Scholar 

  11. Le AT, Gacoin A, Li A, Mai TH, Rebay M, Delmas Y (2014) Constr Build Mater 61:106–113

    Article  Google Scholar 

  12. Le AT, Gacoin A, Li A, Mai TH, El Waki N (2015) Compos Part B 75:201–211

    Article  CAS  Google Scholar 

  13. Johnson AC, Nordin YBDED (2009) Cellulose 28:38

    Google Scholar 

  14. Korjenic A, Petranek V, Zach J, Hroudova J (2011) Energy Build 43:2518–2523

    Article  Google Scholar 

  15. Kozlowski R, Mieleniak B, Przepiera A (1995) Plant residues as raw material for particleboards. Zemedelska Technika-UZPI, Czech Republic

    Google Scholar 

  16. Padkho N (2012) Procedia Eng 32:1113–1118

    Article  Google Scholar 

  17. Vargas S, Rodriquez JR, Lobland HEH, Piechowicz K, Brostow W (2014) Macromol Mater Eng 299:807–813

    Article  CAS  Google Scholar 

  18. Battegazzore D, Alongi J, Frache A (2014) J Polym Environ 22:88–98

    Article  CAS  Google Scholar 

  19. Battegazzore D, Bocchini S, Alongi J, Frache A (2014) RSC Adv 4:54703–54712

    Article  CAS  Google Scholar 

  20. Battegazzore D, Bocchini S, Alongi J, Frache A, Marino F (2014) Cellulose 21:1813–1821

    Article  CAS  Google Scholar 

  21. Battegazzore D, Bocchini S, Alongi J, Frache A (2014) Polym Degrad Stab 108:297–306

    Article  CAS  Google Scholar 

  22. Battegazzore D, Salvetti O, Frache A, Peduto N, De Sio A, Marino F (2016) Composites Part A 81:193–201

    Article  CAS  Google Scholar 

  23. Kozlowski R, Mieleniak B (2000) Proceedings from the third international symposium on natural polymers and composites. Sao Paulo 504–510

  24. Xanthos M (2010) Functional fillers for plastics. Wiley, Weinheim

    Book  Google Scholar 

  25. Kozlowski R, Mieleniak B, Helwig M, Przepiera A (1999) Polym Degrad Stab 64:523–528

    Article  CAS  Google Scholar 

  26. Khedari J, Nankongnab N, Hirunlabh J, Teekasap S (2004) Build Environ 39:59–65

    Article  Google Scholar 

  27. Quintana G, Velasquez J, Betancourt S, Ganan P (2009) Ind Crops Prod 29:60–66

    Article  CAS  Google Scholar 

  28. Sampathrajan A, Vijayaraghavan N, Swaminathan K (1992) Bioresour Technol 40:249–251

    Article  CAS  Google Scholar 

  29. Ciannamea EM, Stefani PM, Ruseckaite RA (2010) Bioresour Technol 101:818–825

    Article  CAS  Google Scholar 

  30. Pickering K (2008) Properties and performance of natural-fibre composites. Elsevier, New York

    Book  Google Scholar 

  31. Mehta G, Mohanty AK, Drzal LT, Kamdem DP, Misra M (2006) J Polym Environ 14:359–368

    Article  CAS  Google Scholar 

  32. Stark NM (2005) Proceeding 2nd wood fibre polymer composites symposium applications and perspectives

  33. Lundin T, Cramer SM, Falk RH, Felton C (2004) J Mater Civil Eng 16:547–555

    Article  CAS  Google Scholar 

  34. Michel A, Billington S (2012) Polym Degrad Stab 97:870–878

    Article  CAS  Google Scholar 

  35. ANSI A208.

  36. Takemori MT (1979) Polym Eng Sci 19:1104–1109

    Article  CAS  Google Scholar 

  37. ASTM D 3045

  38. Hukins D, Mahomed A, Kukureka S (2008) Med Eng Phys 30:1270–1274

    Article  CAS  Google Scholar 

  39. Celina M, Gillen KT, Assink R (2005) Polym Degrad Stab 90:395–404

    Article  CAS  Google Scholar 

  40. Irshad A, Delor-Jestin F, Chalard P, Verney V (2015) Oilseeds Fats Crops Lipids. doi:10.1051/ocl/2014048

  41. CSN EN 312

  42. Dhakal HN, Zhang ZY, Richardson MOW (2007) Compos Sci Technol 67:1674–1683

    Article  CAS  Google Scholar 

  43. Ayadi F, Dole P (2011) Carbohydr Polym 84:872–880

    Article  CAS  Google Scholar 

  44. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) J Appl Polym Sci 128:530–536

    Article  CAS  Google Scholar 

  45. Boxhammer J (2010) Material Testing Product and Technology News. 40. Atlas Material Testing Technology LLC, Mount Prospect

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Giuseppina Iacono for SEM analyses and Prof. Giovanni Camino for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Battegazzore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battegazzore, D., Alongi, J., Duraccio, D. et al. All Natural High-Density Fiber- and Particleboards from Hemp Fibers or Rice Husk Particles. J Polym Environ 26, 1652–1660 (2018). https://doi.org/10.1007/s10924-017-1071-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1071-9

Keywords

Navigation