Skip to main content
Log in

Environmental Functional Photo-Cross-Linked Hydrogel Bilayer Thin Films from Vanillin

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new functional monomer based on vanillin was synthetized and used in the preparation of three different molar concentrations of temperature and pH responsive photo-cross-linker polymers via free radical polymerization with N-isopropylacryamide and malimide photo-cross-linker. Polymers were investigated by 1HNMR, FTIR, UV, gel permeation chromatography (GPC) and differential scanning calorimetery (DSC). The non-responsive copolymers have been synthetized from N,N-dimemthylacrylamide with malimide. Lower critical solution temperatures (T c ) were determined by UV–Vis spectroscopy. Hydrogel bilayer was formed by spin coating of polymer solution of poly(N-isopropylacryamide-Co-malimide-Co-DEAMVA) layer A over gold with adhesion promoter, then cross-linked by UV-irradiation. The swelling properties were determined by surface plasmon resonance with optical waveguides (SPR/OW). The T c of hydrogel was also determined as function of volume degree of swelling or refractive index with temperature at different pH. The next layer was formed by spin coating of polymer solution poly(N,N-dimemthylacrylamid-Co-malimide) layer B over layer A, then cross-linked by UV-irradiation. The swelling properties and T c were determined by SPR/OW in different media. Our target is the formation of biosensor functional gel vessel for biological molecules using aldehyde group. The bilayer functional hydrogels will have an additional feature, in which the target molecule stays safely inside this gel vessel responsively temperature and pH.

Graphical Abstract

New acrylate monomer from vanillin has been synthetized with aldehyde and tertiary amine group to achieve both functionality and pH responsive. The copolymerization with NIPAAm and DMIAAm has done forming pH and temperature photo-cross-linked polymers. Hydrogel layer was built first with mono then bilayer and both has characterized by SPR/OW. The effect of non-responsive layer on the responsive one was demonstrated. In future we will use this technique as biosensor hydrogel for vessel to attach and detach biomolecules, further drug-delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abdelaty MSA (2017) J Polym Environ 3:1

    Google Scholar 

  2. Abdelaty MSA, Kuckling D (2016) Gels 2:1

    Article  CAS  Google Scholar 

  3. Deshmukh PK, Ramani KP, Singh SS, Tekade AR, Chatap VK, Patil GB, Bari SB (2013) J Control Release 166:294

    Article  CAS  PubMed  Google Scholar 

  4. Kikuchi A, Okano T (2002) Prog Polym Sci 27:1165

    Article  CAS  Google Scholar 

  5. Ware T, Simon D, Rennaker RL, Voit W (2013) Smart polymers for neural interfaces. Polym Rev 53:108

    Article  CAS  Google Scholar 

  6. Hamner KL, Alexander CM, Coopersmith K, Reishofer D, Provenza C, Maye MM (2013) ACS Nano 7:7010

    Article  CAS  Google Scholar 

  7. Qiu Y, Park K (2001) Adv Drug Deliv Rev 53:321

    Article  CAS  PubMed  Google Scholar 

  8. Sato E, Masuda Y, Kadota J, Nishiyama T, Horibe H (2015) Eur Polym J 69:607–615

    Article  CAS  Google Scholar 

  9. Chen J-K, Chang C-J (2014) Materials 7:805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng H, Mohamadian H, Stubblefield M, Jerro D, Ibekwe S, Pang SS, Li GQ (2013) Smart Mater Struct 22(9):093001

    Article  Google Scholar 

  11. Zhang M, Estournes C, Bietsch W, Mueller AHE (2004) Adv Funct Mater 14:871

    Article  CAS  Google Scholar 

  12. Matsukuma D, Yamamoto K, Aoyagi T (2006) Langmuir 22:5911

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Pang X-H, Dong C-M (2010) Adv Funct Mater 20:579

    Article  CAS  Google Scholar 

  14. Schattling P, Jochum F-D, Theato P (2014) Poly Chem 5:25

    Article  CAS  Google Scholar 

  15. Li Y, Zhang C, Zhou Y, Dong Y, Chen W (2015) Eur Polym J 69:441

    Article  CAS  Google Scholar 

  16. Fujiwara N, Asaka K, Nishimura Y, Oguro K, Torikai E (2000) Chem Mater 12:1750

    Article  CAS  Google Scholar 

  17. Roy D, Cambre JN (2011) In: Urban MW (ed) B. S. Sumerlin in handbook of stimuli-responsive materials. Wiley-VCH, Weinheim

    Google Scholar 

  18. Xia Y, Yin X, Burke NAD, Stoever HDH (2005) Macromolecules 38:5937

    Article  CAS  Google Scholar 

  19. Cheng G, Boeker A, Zhang M, Krausch G, Mueller AHE (2001) Macromolecules 34:6883

    Article  CAS  Google Scholar 

  20. Chen JK, Wang JH, Fan SK, Chang JY (2012) J Phys Chem C 116:6992

    Google Scholar 

  21. Seuring J, Agarwal S (2012) Macromol Rapid Commun 33:1898

    Article  CAS  PubMed  Google Scholar 

  22. Chang K, Rubright NC, Lowery PD, Taite LJ (2013) J Polym Sci APolym Chem 51:2068

    Article  CAS  Google Scholar 

  23. Heskins M, Guillet JE (1968) J Macromol Sci Chem A 2:1441

    Article  CAS  Google Scholar 

  24. Okubo M, Ahmad H, Suzuki T (1998) Colloid Polym Sci 276:470

    Article  CAS  Google Scholar 

  25. Iatridi Z, Mattheolabakis G, Avgoustakis K, Tsitsilianis C (2011) Soft Matter 7:11160

    Article  CAS  Google Scholar 

  26. Liu X, Yu D, Jin C, Song X, Cheng J, Zhao X, Qi X, Zhang G (2014) New J Chem 38:4821

    Google Scholar 

  27. Soppimath KS, Tan D. C.-W., Yang Y-Y (2005) Adv Mater 17:318

    Article  CAS  Google Scholar 

  28. Delcea M, Möhwald H, Skirtach AG (2011) Adv Drug Deliv Rev 63:730

    Article  CAS  PubMed  Google Scholar 

  29. Uhlig K, Boysen B, Lankenau A, Jaeger M, Wischerhoff E, Lutz J-F, Laschewsky A, Duschl C (2012) Biomicrofluidics 6:11

    Article  CAS  Google Scholar 

  30. Skirtach AG, Yashchenok AM, Möhwalda H (2011) Chem Commun 47:12736

    Article  CAS  Google Scholar 

  31. Bedard M, Skirtach AG, Sukhorukov GB (2007) Macromol Rapid Commun 28:1517

    Article  CAS  Google Scholar 

  32. Honda M, Kataoka K, Seki T, Takeoka Y (2009) Langmuir 25:8349

    Article  CAS  PubMed  Google Scholar 

  33. Fleischmann EK, Zentel R (2013) Angew Chem Int Ed 52:8810

    Article  CAS  Google Scholar 

  34. Zhang C, Madbouly SA, Kessler MR (2015) Macromol Chem Phys 216:1816

    Article  CAS  Google Scholar 

  35. Stanzione JF, Sadler JM, La Scala JJ, Wool RP (2012) Chem Sus Chem 5:1291

    Article  CAS  Google Scholar 

  36. Fache M, Darroman E, Besse V, Auvergne R, Sylvain Caillol S, Boutevina B (2014) Green Chem16:1987

    Article  CAS  Google Scholar 

  37. Mateescu A, Wang Y, Dostalek J, Jonas U (2012) Membranes 2:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng X, Wu H, Sui X, Hempenius MA, JuliusVancso G (2015) Eur Polym J 72:535

    Article  CAS  Google Scholar 

  39. Tokarev I, Minko S (2009) Soft Matter 5:511

    Article  CAS  Google Scholar 

  40. Harmon ME, Kuckling D, Pareek P, Frank CW (2003) Langmuir 19:10947

    Article  CAS  Google Scholar 

  41. Kuckling D, Harmon ME, Frank CW (2002) Macromolecules 35:6377

    Article  CAS  Google Scholar 

  42. Harmon ME, Kuckling D, Frank CW (2003) Macromolecules 36:162

    Article  CAS  Google Scholar 

  43. Nan Zhang N, Knoll W (2009) Anal Chem 81:2611

    Article  CAS  PubMed  Google Scholar 

  44. Anac I, Aulasevich A, Junk MJN, Jakubowicz P, Roskamp RF, Menges B, Jonas U, Knoll W (2010) Macrmol Chem Phys 211:1018

    Article  CAS  Google Scholar 

  45. Chen JK, Chan CH, Chang FC (2008) Appl Phys Lett 92(1):053108

    Article  CAS  Google Scholar 

  46. Chan CH, Chen JK, Chang FC (2008) Sens Actuat B 133:327

    Article  CAS  Google Scholar 

  47. Chen JK, Li JY (2010) Sens Actuat B 150:314

    Article  CAS  Google Scholar 

  48. Hosoya K, Kubo T, Tanaka N, Haginaka JA (2003) J Pharm Biomed Anal 30:1919

    Article  CAS  PubMed  Google Scholar 

  49. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Angew Chem Int Ed 45:813

    Article  CAS  Google Scholar 

  50. Li X, Yu XH, Han YC (2012) Langmuir 28:10584

    Article  CAS  PubMed  Google Scholar 

  51. Wan PB, Eric HH, Zhang X (2012) Prog Chem 24:1

    CAS  Google Scholar 

  52. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Biomacromolecules 4:344

    Article  CAS  PubMed  Google Scholar 

  53. Uakushiji T, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T (1998) Langmuir 14:4657–4662

    Article  Google Scholar 

  54. Chen JK, Wang JH, Chang JY, Fan SK (2012) Appl Phys Lett 101(1):123701

    Article  CAS  Google Scholar 

  55. Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, Hammond PT (2011) Macromolecules 44:612

    Article  CAS  Google Scholar 

  56. Yang HW, Chena JK, Cheng CC, Kuo SW (2013) Appl Surf Sci 271:60

    Article  CAS  Google Scholar 

  57. Gauthier MA, Gibson MI, Klok HA (2009) Angew Chem Int Ed 48:48

    Article  CAS  Google Scholar 

  58. Fuchs AD, Tiller JC (2006) Angew Chem Int Ed 45:6759

    Article  CAS  Google Scholar 

  59. Zolotukhin MG, Colquhoun HM, Sestiaa LG, Rueda DR, Flot D (2003) Macromolecule 36:4766

    Article  CAS  Google Scholar 

  60. Brooks Y-E, Kizhakkedathu JN (2008) Macromolecules 41:5393

    Article  CAS  Google Scholar 

  61. Schneider BH, Dickinson EL, Vach MD, Hoijer JV, Howard LV (2000) Biosens Bioelectron 15:13

    Article  CAS  PubMed  Google Scholar 

  62. Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, Homola J, Jiang SY (2008) Anal Chem 80:7894

    Article  CAS  PubMed  Google Scholar 

  63. Wark AW, Lee HJ, Corn RM (2005) Anal Chem 77:3904

    Article  CAS  PubMed  Google Scholar 

  64. Lakhiari H, Okano T, Nurdin N, Luthi C, Descouts P, Muller D, Jozefonvicz J (1998) Biochim Biophys Acta 1379:303

    Article  CAS  PubMed  Google Scholar 

  65. Kanazawa H, Yamamoto K, Matsushima Y, Takai N, Kikuchi A, Sakurai Y, Okano T (1996) Anal Chem 68:100

    Article  CAS  PubMed  Google Scholar 

  66. Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Small 3:650–657

    Article  CAS  PubMed  Google Scholar 

  67. Xulu PM, Filipcsei G, Zrinyi M (2000) Macromolecules 33:1716

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful acknowledge to Egyptian culture and missions, and The Deutscher Akademischer Austauch (DAAD) for financial assistance during the post doctor work in Germany of Momen S.A. Abdelaty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A. Environmental Functional Photo-Cross-Linked Hydrogel Bilayer Thin Films from Vanillin. J Polym Environ 26, 2243–2256 (2018). https://doi.org/10.1007/s10924-017-1126-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1126-y

Keywords

Navigation