Skip to main content
Log in

Development of Chitosan Membranes as a Potential PEMFC Electrolyte

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Commercial chitosan and chitosan extracted from shrimp shells are being used to design membranes to be tested as low cost electrolyte in PEM fuel cells. This study investigated the influence of the deacetylation degree (DD) and molar mass (M V ) of the chitosans used in the composition of membranes on its performance regarding to proton conductivity and other properties. Preliminary results indicate that the chitosan extracted from shrimp shells generated membranes with promising properties such as proton conductivity, which demonstrated to be even a 100 times higher than those shown by commercial chitosan membranes. The significant increase in proton conductivity can be associated with the higher number and availability of amino groups (–NH2) in the chitosan produced in the laboratory, which presents higher DD and lower M V . It is believed that the properties of chitosan can be manipulated in such a way that it would be possible to obtain proton conductivity values closer to that presented by Nafion®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma J, Sahai Y (2013) Carbohydr Polym 92:955

    Article  CAS  PubMed  Google Scholar 

  2. Andrade SBM, Ladchumananandasivam R, Nascimento RM (2010) Extração e caracterização de quitina e quitosana e a sua utilização na fabricação de nanofibras. In: V Congresso Nacional de Engenharia Mecânica, Campina Grande, paraíba, 18–21 August 2010

  3. Wang C, Wang S, Peng L, Zhang J, Shao Z, Huang J, Sun C, Ouyang M, He X (2016) Rev Energies 9:603

    Article  Google Scholar 

  4. Malis J, Mazúr P, Paidar M, Bystron T, Bouzek K (2016) Int J Hydrog Energy 41:2177

    Article  CAS  Google Scholar 

  5. Smitha B, Devi A, Sridhar S (2008) Int J Hydrog Energy 33:4138

    Article  CAS  Google Scholar 

  6. Khoshkroodi LG (2010) Polymer electrolyte membrane degradation and mobility in fuel cells: a solid-state NMR investigation. Doctoral Thesis, University of Stuttgart, Alemanha

  7. Perles CJ (2008) Rev Polímeros 4:281

    Article  Google Scholar 

  8. Santamaria M, Pecoraro CM, Di Franco F, Di Quarto F, Gatto I, Saccà A (2016) Int J Hydrog Energy 41:5389

    Article  CAS  Google Scholar 

  9. Vicentini DS (2009) Effect of inclusion of molecular sieves, polyvinyl alcohol, montmorillonites and titanium dioxide chitosan membranes. Doctoral Thesis, Federal University of Santa Catarina, Florianópolis, Brazil

  10. Campana-Filho SP, Britto D, Curti E, Abreu FR, Cardoso MB, Battisti MV, Sim PC, Goy RC, Signini R, Lavall RL (2007) Quím Nova 30:644

    Article  CAS  Google Scholar 

  11. Bessa-Junior AP, Gonçalves AA (2013) Actapesca 1:13

    Google Scholar 

  12. Santos JE, Soares JP, Dockal ER, Campana-Filho SP, Cavalheiro ETG (2003) Rev Polimeros 13:242

    Google Scholar 

  13. Arantes MK, Kugelmeier CL, Cardoso-Filho L, Monteiro MR, Oliveira CR, Alves HJ (2015) Polym Eng Sci 55:1969

    Article  CAS  Google Scholar 

  14. Tavares IS (2011) Obtenção e caracterização de nanopartículas de quitosana. Dissertation, Master’s in Chemical, Federal University of Rio Grande do Norte, Natal, Brazil

  15. Osifo PO, Masala A (2012) J Fuel Cell Sci Technol 9:1

    Article  CAS  Google Scholar 

  16. Tolaimate A, Desbrieresb J, Rhazia M, Alaguic A (2003) Rev Polym 44:7939

    Article  CAS  Google Scholar 

  17. Kassai MR (2007) Carbohydr Polym 68:477

    Article  CAS  Google Scholar 

  18. Ribeiro C, Scheufele FB, Espinoza-Quiñones FR, Modenes AN, Silva CMG, Vieira MGA, Borba CE (2015) Physicochem Eng Asp 482:693

    Article  CAS  Google Scholar 

  19. Paganin VA, Oliveira CLF, Ticianelli EA, Springer TE, Gonzales ER (1998) Electrochim Acta 43:3761

    Article  CAS  Google Scholar 

  20. Aguiar KR, Batalha GP, Peixoto M, Ramos A, Pezzin SH (2012) Rev Polimeros 22:453

    CAS  Google Scholar 

  21. Amaral IF, Granja PL, Barbosa MA (2005) J Biomater Sci Polym Ed 16:1575

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira PN, Mendes AMM (2016) Mater Res 19:954

    Article  Google Scholar 

  23. Witt MA, Barra GMO, Bertolino JR, Pires ATN (2010) J Braz Chem Soc 21:1692

    Article  CAS  Google Scholar 

  24. Rahman NFA, Loh KS, Mohamad AB, Kadhum AAH, Lim KL (2016) Malays J Anal Sci 20:885

    Article  Google Scholar 

  25. Permana D, Purwanto M, Ramadhan LOAN, Atmaja L (2015) J Chem 15:218

    CAS  Google Scholar 

  26. Wan Y, Creber KAM, Peppley B, Bui VT (2003) Rev Polym 44:1057

    Article  CAS  Google Scholar 

  27. Liu L, Chen W, Li Y (2016) J Membr Sci 504:1

    Article  CAS  Google Scholar 

  28. Andrade AB (2008) Desenvolvimento de conjuntos eletrodo-membrana-eletrodo para células a combustível a membrana trocadora de prótons (PEMFC) por impressão à tela. Dissertation, Master’s in Science, University of São Paulo, São Paulo, Brazil

  29. Matos BR (2008) Preparação e caracterização de eletrólitos compósitos Naion/TiO2 para aplicação em células a combustível de membrana de troca protônica. Dissertation, Master’s in Science, University of São Paulo, São Paulo, Brazil

  30. Luo Z, Chang Z, Zhang Y, Liu Z, Li J (2010) Int J Hydrog Energy 35:3120

    Article  CAS  Google Scholar 

  31. Vijayalekshmi V, Khastgir D (2017) J Membr Sci 523:45

    Article  CAS  Google Scholar 

  32. Bispo VM (2009) Estudo do Efeito da Reticulação por Genipin em suportes biocompatíveis de Quitosana-PVA. Doctoral Thesis, Federal University of Minas Gerais, Minas Gerais, Brazil

  33. Cardoso MT, Carneiro ACO, Oliveira RC, Carvalho AMML, Patrício Júnior W, Martins MC, Santos RC, Silva JC (2012) Cienc Florest 22:403

    Article  Google Scholar 

  34. Carpiné D, Dagostin JLA, Bertan LC, Mafra MR (2015) Food Bioprocess Technol 8:1811

    Article  CAS  Google Scholar 

  35. TAPPI—Technical Association of the Pulp & Paper Industry (1997) T 411 om-97—Thickness (caliper) of paper, paperboard, and combined board

  36. Cui Z, Xing W, Liu C, Liao J, Zhang H (2008) J Power Sources 188:24

    Article  CAS  Google Scholar 

  37. Wang J, Zheng X, Zheng HWB, Jiang Z, Hao X, Wang B (2008) J Power Sources 178:9

    Article  CAS  Google Scholar 

  38. Santamaria M, Pecoraro CM, Di Quarto F, Bocchetta P (2015) J Power Sources 276:189

    Article  CAS  Google Scholar 

  39. Pecoraro CM, Santamaria M, Bocchetta P, Di Quarto F (2015) Int J Hydrog Energy 40:14616

    Article  CAS  Google Scholar 

  40. Vijayalekshmi V, Khastgir D (2018) Energy 142:313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge PTI Foundation (Brazil) for the financial support and for the granting scholarships (Notice 058/2014 N. 014/2014). We also gratefully Mr. Valdecir Antônio Paganin from University of São Paulo (USP/IQSC) for providing the structure and equipment for the research development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine N. Lupatini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupatini, K.N., Schaffer, J.V., Machado, B. et al. Development of Chitosan Membranes as a Potential PEMFC Electrolyte. J Polym Environ 26, 2964–2972 (2018). https://doi.org/10.1007/s10924-017-1146-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1146-7

Keywords

Navigation