Skip to main content

Advertisement

Log in

Effects of MCC Content on the Structure and Performance of PLA/MCC Biocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Green composites of polylactic acid (PLA) with microcrystalline cellulose (MCC) as reinforcement of the polymer matrix were produced by melt blending to improve the brittleness of PLA. The MCC was prepared by hydrolysis of wheat straw cellulose with sulfuric acid to remove amorphous area. The biocomposites were prepared with different MCC contents (2, 4, 6, 8 wt%). Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared and mechanical testing were used to study the structure and properties of MCC and biocomposites. The tensile modulus and the strength of PLA/MCC biocomposites increased from 206 to 262 MPa and from 67.35 to 73.01 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  CAS  Google Scholar 

  2. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  3. Jiang Y, Woortman AJJ, van Ekenstein GORA., Loos K (2015) Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polym Chem 6:5451–5463

    Article  CAS  Google Scholar 

  4. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  5. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  6. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  7. Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. Int J Biol Macromol 93:789–804

    Article  CAS  PubMed  Google Scholar 

  8. Kassaye S, Pant KK, Jain S (2016) Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose. Fuel Process Technol 148:289–294

    Article  CAS  Google Scholar 

  9. Mohamad HMK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634

    Article  CAS  Google Scholar 

  10. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  11. Butera G, De Pasquale C, Maccotta A, Alonzo G, Conte P (2011) Thermal transformation of micro-crystalline cellulose in phosphoric acid. Cellulose 18:1499–1507

    Article  CAS  Google Scholar 

  12. Cheng M, Qin ZY, Chen YY, Hu S, Ren ZC, Zhu MF (2017) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain Chem Eng 5:4656–4664

    Article  CAS  Google Scholar 

  13. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  14. Naduparambath S, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812

    Article  CAS  Google Scholar 

  15. Chuayjuljit S, Su-uthai S, Charuchinda S (2009) Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Manag Res 28:109–117

    Article  CAS  PubMed  Google Scholar 

  16. Xiang LY, MA PM, Samsu Baharuddin A (2016) Characterisation of microcrystalline cellulose from oil palm fibres for food applications. Carbohydr Polym 148:11–20

    Article  CAS  PubMed  Google Scholar 

  17. Singh MP, Kanawjia SK, Giri A, Khetra Y (2015) Effect of temperature and microcrystalline cellulose on moisture sorption characteristics of shredded mozzarella cheese. J Food Process Pres 39:521–529

    Article  CAS  Google Scholar 

  18. Merci A, Urbano A, Grossmann MVE, Tischer CA, Mali S (2015) Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res Int 73:38–43

    Article  CAS  Google Scholar 

  19. Jahan MS, Saeed A, He ZB, Ni YH (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459

    Article  CAS  Google Scholar 

  20. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985

    Article  CAS  Google Scholar 

  21. Auxenfans T, Buchoux S, Djellab K, Avondo C, Husson E, Sarazin C (2012) Mild pretreatment and enzymatic saccharification of cellulose with recycled ionic liquids towards one-batch process. Carbohydr Polym 90:805–813

    Article  CAS  PubMed  Google Scholar 

  22. Cai H, Li CZ, Wang AQ, Xu GL, Zhang T (2012) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B 123:333–338

    Article  CAS  Google Scholar 

  23. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  24. Kim DH, Kang HJ, Song YS (2013) Rheological and thermal characteristics of three-phase eco-composites. Carbohydr Polym 92:1006–1011

    Article  CAS  PubMed  Google Scholar 

  25. Oguz O, Bilge K, Simsek E, Citak MK, Wis AA, Ozkoc G, Menceloglu YZ (2017) High-performance green composites of poly(lactic acid) and waste cellulose fibers prepared by high-shear thermokinetic mixing. Ind Eng Chem Res 56:8568–8579

    Article  CAS  Google Scholar 

  26. Dogu B, Kaynak C (2015) Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization. Cellulose 23:611–622

    Article  CAS  Google Scholar 

  27. Ibrahim AN, Wahit MU, Yussuf AA (2014) Effect of fiber reinforcement on mechanical and thermal properties of poly(ɛ-caprolactone)/poly(lactic acid) blend composites. Fiber Polym 15:574–582

    Article  CAS  Google Scholar 

  28. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  29. Dong F, Yan ML, Jin CD, Li SJ (2017) Characterization of type-II acetylated cellulose nanocrystals with various degree of substitution and its compatibility in PLA films. Polymer 9:346

    Article  CAS  Google Scholar 

  30. Li H, Cao Z, Wu D, Tao G, Zhong W, Zhu H, Qiu P, Liu C (2016) Crystallisation, mechanical properties and rheological behaviour of PLA composites reinforced by surface modified microcrystalline cellulose. Plast Rubber Compos 45:181–187

    Article  CAS  Google Scholar 

  31. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821

    Article  CAS  Google Scholar 

  32. Saeidlou S, Huneault MA, Li HB, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  33. Oh SY, Yoo D, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  PubMed  Google Scholar 

  34. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859

    Article  CAS  Google Scholar 

  35. Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87:1131–1138

    Article  CAS  Google Scholar 

  36. Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793

    Article  CAS  Google Scholar 

  37. Cao Z, Lu Y, Zhang C, Zhang Q, Zhou A, Hu YC, Wu D, Tao GL, Gong FH, Ma WZ, Liu CL (2017) Effects of the chain-extender content on the structure and performance of poly(lactic acid)-poly(butylene succinate)-microcrystalline cellulose composites. J Appl Polym Sci 134:44895

    Google Scholar 

  38. Guo YC, He S, Zuo XH, Xue Y, Chen ZH, Chang CC, Weil E, Rafailovich M (2017) Incorporation of cellulose with adsorbed phosphates into poly (lactic acid) for enhanced mechanical and flame retardant properties. Polym Degrad Stab 144:24–32

    Article  CAS  Google Scholar 

  39. Guo YC, Yang K, Zuo XH, Xue Y, Marmorat C, Liu Y, Chang CC, Rafailovich MH (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of poly (lactic acid) nanocomposites. Polymer 83:246–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jilin Scientific and Technological Development Program, China (No. 20180101287JC), the National Nature Science Foundation of China (No. 51502108) and the Foundation of Jilin Provence Development and Reform Commission, China (No. 2014N145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, X., Wang, X., Zhu, Y. et al. Effects of MCC Content on the Structure and Performance of PLA/MCC Biocomposites. J Polym Environ 26, 3484–3492 (2018). https://doi.org/10.1007/s10924-018-1226-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1226-3

Keywords

Navigation