Skip to main content
Log in

Preparation and Characterization of Chitosan/Gelatin-Based Active Food Packaging Films Containing Apple Peel Nanoparticles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bio-based active food packaging containing natural antioxidants has gaining great attention these days. The food industry resulted in huge amount of waste rich in natural antioxidant and utilization of these wastes is very important from environmental viewpoint. In this study, apple peel was used to produce apple peel nanoparticles and later, chitosan (CS) and gelatin (G) based novel functional films were successfully fabricated. The prepared films were characterized for their structure, potential interaction and thermal stability. In addition, tensile strength and physical properties were also determined. Scanning electron microscopy (SEM) results revealed that higher concentration of apple peel ethanolic extract (APEE) triggered the sintering of nanoparticles within the films. The data of Fourier transform-infrared spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) revealed that the presence of apple peel related compounds in the films resulted decrease in availability of hydroxyl groups within the polymer matrix. The addition of APEE into CS/G significantly enhanced the physical properties of the film by increasing its thickness while solubility, swelling ratio, and water vapor permeability were decreased. It could be inferred that CS/G-APEE films exhibited good antioxidant properties, indicating that it could be developed as a bio-nanocomposite food packaging material for the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu J, Liu S, Chen Y, Zhang L, Kan J, Jin C (2017) Food Hydrocoll 71:176–186

    CAS  Google Scholar 

  2. Koshy RR, Mary SK, Thomas S, Pothan LA (2015) Food Hydrocoll 50:174–192

    CAS  Google Scholar 

  3. Chang-Bravo L, Lopez-Cordoba A, Martino M (2014) React Funct Polym 85:11–19

    CAS  Google Scholar 

  4. Colín-Chavez C, Vicente-Ramírez EB, Soto-Valdez H, Peralta E, Auras R (2014) Food Bioprocess Technol 7:3504–3515

    Google Scholar 

  5. Friesen K, Chang C, Nickerson M (2015) Food Chem 2015(172):18–23

    Google Scholar 

  6. Ciannamea EM, Stefani PM, Ruseckaite RA (2016) LWT Food Sci Technol 74:353–362

    CAS  Google Scholar 

  7. Maryam Adilah ZA, Jamilah B, Nur Hanani ZA (2018) Food Hydrocoll 74:207–218

    CAS  Google Scholar 

  8. Moradi M, Tajik H, Razavi Rohani SM, Oromiehie AR, Malekinejad H, Aliakbarlu J (2012) LWT Food Sci Technol 46:477–484

    CAS  Google Scholar 

  9. Talon E, Trifkovic KT, Nedovic VA, Bugarski BM, Vargas M, Chiralt A (2017) Carbohydr Polym 157:1153–1161

    CAS  PubMed  Google Scholar 

  10. Shalini R, Gupta DK (2010) J Food Sci Technol 47:365–371

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyer J, Liu RH (2004) Nutr J 3:1–15

    Google Scholar 

  12. Karaman S, Tutem E, Baskanb KS, Apak R (2013) J Sci Food Agric 93:867–875

    CAS  PubMed  Google Scholar 

  13. Hamed I, Ozogul F, Regenstein JM (2016) Trends Food Sci Technol 48:40–50

    CAS  Google Scholar 

  14. Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F (2016) Int J Biol Macromol 86:630–645

    CAS  PubMed  Google Scholar 

  15. Mohammadi R, Mohammadifar MA, Rouhi M, Kariminejad M, Mortazavian AM, Sadeghi E, Hasanvand S (2018) Int J Biol Macromol 107:406–412

    CAS  PubMed  Google Scholar 

  16. Muller CMO, Yamashita F, Laurindo JB (2008) Carbohydr Polym 72:82–87

    Google Scholar 

  17. Rodrıguez M, Oses J, Ziani K, Mate JI (2006) Food Res Int 39:840–846

    Google Scholar 

  18. Yun YH, Youn HG, Shin JY, Yoon SD (2017) Int J Biol Macromol 104:1150–1157

    CAS  PubMed  Google Scholar 

  19. Joye IJ, McClements DJ (2013) Trends Food Sci Technol 34:109–123

    CAS  Google Scholar 

  20. Kakran M, Sahoo NG, Tan IL, Li L (2012) J Nano Res 14:1–11

    Google Scholar 

  21. Jabbar S, Abid M, Wu T, Hashim MM, Saeeduddin M, Hu B, Lei S, Zeng XX (2015) J Food Process Preserv 39:1878–1888

    CAS  Google Scholar 

  22. Ramic M, Vidovic S, Zekovic Z, Vladic J, Cvejin A, Pavlic B (2015) Ultrason Sonochem 23:360–368

    CAS  PubMed  Google Scholar 

  23. Lopez-Cordoba A, Medina-Jaramillo C, Pineros-Hernandez D, Goyanes S (2017) Food Hydrocoll 71:26–34

    CAS  Google Scholar 

  24. Hassannia-Kolaee M, Khodaiyan F, Shahabi-Ghahfarrokhi I (2016) J Food Sci Technol 53:1294–1302

    CAS  PubMed  Google Scholar 

  25. Ferreira A, Nunes C, Castro A, Ferreira P, Coimbra MA (2014) Carbohydr Polym 113:490–499

    CAS  PubMed  Google Scholar 

  26. Bozic M, Gorgieva S, Kokol V (2012) Carbohydr Polym 87:2388–2398

    CAS  Google Scholar 

  27. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Food Hydrocoll 44:172–182

    CAS  Google Scholar 

  28. Jridi M, Hajji S, Ayed HB, Lassoued I, Mbarek A, Kammoun M, Souissi N, Nasri M (2014) Int J Biol Macromol 67:373–379

    CAS  PubMed  Google Scholar 

  29. Gonçalves CMB, Tome LC, Garcia H, Brandao L, Mendes AM, Marrucho IM (2013) J Food Eng 116:562–571

    Google Scholar 

  30. Pastor C, Sanchez-Gonzalez L, Chafer M, Chiralt A, Gonzalez-Martínez C (2010) Carbohydr Polym 82:1174–1183

    CAS  Google Scholar 

  31. Teodoro AP, Mali S, Romero N, de Carvalho GM (2015) Carbohydr Polym 126:9–16

    CAS  PubMed  Google Scholar 

  32. Qiao C, Ma X, Zhang J, Yao J (2017) Food Chem 235:45–50

    CAS  PubMed  Google Scholar 

  33. Lee DS, Woo JY, Ahn CB, Je JY (2014) Food Chem 148:97–104

    CAS  PubMed  Google Scholar 

  34. Pineros-Hernandez D, Medina-Jaramillo C, Lopez-Cordoba A, Goyanes S (2017) Food Hydrocoll 63:488–495

    CAS  Google Scholar 

  35. Jahed E, Khaledabad MA, Almasi H, Hasanzadeh R (2017) Carbohydr Polym 164:325–338

    CAS  PubMed  Google Scholar 

  36. Fan JM, Ma W, Liu GQ, Yin SW, Tang CH, Yang XQ (2014) Food Hydrocoll 36:60–69

    CAS  Google Scholar 

  37. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Food Chem 194:1266–1274

    CAS  PubMed  Google Scholar 

  38. Rui L, Minhao X, Bing H, Li Z, Danyang Y, Zeng XX (2017) Carbohydr Polym 173:473–481

    CAS  PubMed  Google Scholar 

  39. Voon HC, Bhat R, Easa AM, Liong MT, Karim AA (2012) Food Bioprocess Technol 5:1766–1774

    CAS  Google Scholar 

  40. Mayachiew P, Devahastin S (2010) Food Chem 118:594–601

    CAS  Google Scholar 

  41. Kakaei S, Shahbazi Y (2016) LWT Food Sci Technol 72:432–438

    CAS  Google Scholar 

  42. Aldana AA, González A, Strumia MC, Martinelli M (2012) Mater Chem Phys 134:317–324

    CAS  Google Scholar 

  43. Vanin FM, Hirano MH, Carvalho RA, Moraes ICF, Bittante AMQB, Sobral PJA (2014) Food Res Int 63:16–24

    CAS  Google Scholar 

  44. Martelli MR, Barros TT, De Moura MR, Mattoso LHC, Assis OBG (2013) J Food Sci 78:98–104

    Google Scholar 

  45. Chang PR, Jian R, Yu J, Ma X (2010) Food Chem 120:736–740

    CAS  Google Scholar 

  46. Bilbao-Sainz C, Bras J, Williams T, Senechal T, Orts W (2011) Carbohydr Polym 86:1549–1557

    CAS  Google Scholar 

  47. Riaz A, Lei S, Akhtar HMS, Wan P, Chen D, Jabbar S, Abid M, Hashim MM, Zeng XX (2018) Int J Biol Macromol 114:547–555

    CAS  PubMed  Google Scholar 

  48. Elsabee MZ, Abdou ES (2013) Mater Sci Eng C 33:1819–1841

    CAS  Google Scholar 

  49. Hoque MS, Benjakul S, Prodpran T (2011) Food Hydrocoll 25:1085–1097

    CAS  Google Scholar 

  50. Chen H, Hu X, Chen E, Wu S, McClements DJ, Liu S, Li B, Li Y (2016) Food Hydrocoll 61:662–671

    CAS  Google Scholar 

  51. Cheng YS, Wang BJ, Weng YM (2015) LWT Food Sci Technol 63:115–121

    CAS  Google Scholar 

  52. Xuejiao W, Yumei X, Hanjing G, Lin C, Jiali W, Shuang Z, Yan G, Zhixi L, Xianchao F (2018) Carbohydr Polym 179:207–220

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the first author would like to express his thanks to the Ministry of Education of China for financial assistance through the Chinese Government Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camel Lagnika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, A., Lagnika, C., Abdin, M. et al. Preparation and Characterization of Chitosan/Gelatin-Based Active Food Packaging Films Containing Apple Peel Nanoparticles. J Polym Environ 28, 411–420 (2020). https://doi.org/10.1007/s10924-019-01619-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01619-4

Keywords

Navigation