Skip to main content
Log in

Novel Collagen-Chitosan Based Hydrogels Reinforced with Manganite as Potential Adsorbents of Pb2+ Ions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The contamination of water by Pb2+ ions is a problem that requires an imminent solution. Design of hydrogels based on polymers as well as inorganic phases is an innovative alternative for the generation of matrices with adapted properties. This work proposes the synthesis of a novel composite hydrogel based on collagen-polyurethane-chitosan reinforced with manganite; this inorganic phase increases the velocity of the adsorption process of the Pb2+ ions. The effect of the concentration of manganite on the properties of composite hydrogels is studied. The results indicate that the composite reinforced with manganite presents an amorphous structure, improved mechanical properties and resistance to the both acidic and proteolytic degradation. The hydrogel with 35 wt% of manganite show a removal rate of Pb2+ of 91 ± 6% at 24 h. These hydrogel composites could represent an efficient and sustainable alternative for the removal of Pb2+ ions from contaminated water.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Environ Chem Lett 8(3):199–216

    CAS  Google Scholar 

  2. Rabin R (2008) Am J Public Health 98:1584–1592

    PubMed  PubMed Central  Google Scholar 

  3. Landrigan PJ (2018) The Lancet Public Heath 3:156–157

    Google Scholar 

  4. Abadin HG, Hibbs BF, Pohl HR (1997) Toxicol Ind Health 15(4):1–24

    Google Scholar 

  5. Abadin HG, Wheeler JS, Jones DE (1997) J Occup Med Toxicol 6:225–237

    CAS  Google Scholar 

  6. Adhikari N, Sinha N, Narayan R (2001) J Appl Toxicol 21:275–277

    PubMed  CAS  Google Scholar 

  7. Ihsanullah AA, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Sep Purif Technol 157:141–161

    CAS  Google Scholar 

  8. Zhang W, Yang J, Wu X, Hu Y, Yu W, Wang J, Dong J, Li M, Liang S, Hu J, Kumar RV (2016) Renew Sustain Energy Rev 61:08–122

    Google Scholar 

  9. Abd El fatah M, Ossaman ME (2014) Int J Environ Res 8:741–750

    Google Scholar 

  10. Afroze S, Sen TK (2018) Water Air Soil Pollut 229:225–234

    Google Scholar 

  11. Abdolali A, Guo W, Ngo H, Chen S, Nguyen N, Tung K (2014) Bioresour Technol 160:57–66

    PubMed  CAS  Google Scholar 

  12. Qin Z, Liu F, Lan S, Li W, Yin H, Zheng L, Zhang Q (2019) Appl Clay Sci 168:68–76

    CAS  Google Scholar 

  13. Wang X, He M, Lin C, Gao Y, Zheng L (2012) Geochemistry 72(4):41–47

    CAS  Google Scholar 

  14. Cano-Salazar LF, Martínez-Luévanos A, Claudio-Rizo JA, Carrillo-Pedroza FR, Montemayor SM, Rangel-Mendez JR (2020) RSC Adv 10:179–186

    CAS  Google Scholar 

  15. Overstreet DJ, Dutta D, Stabenfeldt SE, Vernon BL (2012) J Polym Sci B 50(13):881–903

    CAS  Google Scholar 

  16. Sinha V, Chakma S (2019) J Environ Chem Eng 7(5):103295

    CAS  Google Scholar 

  17. Mahinroosta M, Farsangi ZJ, Allahverdi A, Shakoori Z (2018) Mater Today Chem 8:42–55

    CAS  Google Scholar 

  18. Fan S, Tang Q, Wu J, Hu D, Sun H, Lin J (2008) J Mater Sci 43(17):5898–5904

    CAS  Google Scholar 

  19. Chao G, Deng H, Huang Q, Jia W, Huang W, Gu Y, Tan H, Fan L, Liu C, Huang A, Lei K, Gong C, Tu M, Qian Z (2006) J Polym Res 13(5):349–355

    CAS  Google Scholar 

  20. Zhang S, Han D, Ding Z, Wang X, Zhao D, Hu Y, Xiao X (2019) J Wuhan Univ Technol Mater Sci 34(3):744–751

    CAS  Google Scholar 

  21. Vieira RM, Vilela PB, Becegato VA, Paulino AT (2018) J Environ Chem Eng 6(2):2713–2723

    CAS  Google Scholar 

  22. Chen B, Zhao H, Chen S, Long F, Huang B, Yang B, Pan X (2019) Chem Eng J 356:69–80

    CAS  Google Scholar 

  23. Jia Y, Li X, Jiang J, Sun K (2015) Iran Polym J 24(9):775–781

    CAS  Google Scholar 

  24. Fosso-Kankeu E, Mittal H, Waanders F, Ray SS (2017) J Ind Eng Chem 48:151–161

    CAS  Google Scholar 

  25. Wang J, Wei L, Ma Y, Li K, Li M, Yu Y, Qiu H (2013) Carbohydr Polym 98(1):736–743

    PubMed  CAS  Google Scholar 

  26. Singha NR, Roy C, Mahapatra M, Dutta A, Deb Roy JS, Mitra M, Chattopadhyay PK (2019) ACS Omega 4(1):421–436

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Claudio-Rizo JA, Mendoza-Novelo B, Delgado J, Castellano LE, Mata-Mata JL (2016) Biomed Mater 11(3):035016

    PubMed  Google Scholar 

  28. Claudio-Rizo JA, Rangel-Argote M, Muñoz-González PU, Castellano LE, Delgado J, Gonzalez-García G, Mata-Mata JL, Mendoza-Novelo B (2016) J Mater Chem B 4(40):6497–6509

    PubMed  CAS  Google Scholar 

  29. Claudio-Rizo JA, Rangel-Argote M, Castellano LE, Delgado J, Mata-Mata JL, Mendoza-Novelo B (2017) Mater Sci Eng C 79:793–801

    CAS  Google Scholar 

  30. Mendoza-Novelo B, Mata-Mata JL, Vega-González A, Cauich-Rodríguez JV, Marcos-Fernández A (2014) J Mater Chem B 2:2874–2882

    PubMed  CAS  Google Scholar 

  31. Crisostomo VMB, Ngala JK, Alia S, Dobley A, Morein C, Chen CH, Suib SL (2007) Chem Mater 19(7):1832–1839

    CAS  Google Scholar 

  32. Chen CY, Lin MS, Hsu KR (2008) J Hazard Mater 152:986–993

    PubMed  CAS  Google Scholar 

  33. Monier M, Ayad DM, Sarhan AA (2010) J Hazard Mater 176:348–355

    PubMed  CAS  Google Scholar 

  34. Kampalanonwat P, Supaphol P (2010) ACS Appl Mater Interfaces 2:3619–3627

    PubMed  CAS  Google Scholar 

  35. Chatzistavrou X, Rameshwar RR, Caldwell DJ, Peterson AW, McAlpin B, Wang YY, Zheng L, Fenno JC, Stegemann JP, Papagerakis P (2016) J Non-Cryst Solids 432(A):143–149

    CAS  Google Scholar 

  36. Liu Y, Yang J, Zhang P, Liu C, Wang W, Liu W (2012) J Mater Chem B 22(2):512–519

    CAS  Google Scholar 

  37. Kazek-Kęsik A, Pietryga K, Basiaga M, Blacha-Grzechnik A, Dercz G, Kalemba-Rec I, Pamuła E, Simka W (2017) Surf Coat Technol 328:1–12

    Google Scholar 

  38. Yunoki S, Matsuda T (2008) Biomacromol 9(3):879–885

    CAS  Google Scholar 

  39. Wu X, Black L, Santacana-Laffitte G, Patrick CW (2007) J Biomed Mater Res A 81(1):59–65

    PubMed  Google Scholar 

  40. Sheehan JC, Hlavka JJ (1957) J Am Chem Soc 79(16):4528–4529

    CAS  Google Scholar 

  41. Yoo JS, Kim YJ, Kim SH, Choi SH (2011) Korean J Thorac Cardiovasc Surg 44(3):197–207

    PubMed  PubMed Central  Google Scholar 

  42. Rangel-Argote M, Claudio-Rizo JA, Mata-Mata JL, Mendoza-Novelo B (2018) ACS Appl Bio Mater 1(5):1215–1228

    CAS  Google Scholar 

  43. Harris JR, Soliakov A, Lewis RJ (2013) Micron 49:60–68

    PubMed  CAS  Google Scholar 

  44. Tan H, Wu B, Li C, Mu C, Li H, Lin W (2015) Carbohydr Polym 129:17–24

    PubMed  CAS  Google Scholar 

  45. Kobayashi H, Kato M, Taguchi T, Ikoma T, Miyashita H, Shimmura S, Tsubota K, Tanaka J (2004) Mater Sci Eng C 24(6):729–735

    Google Scholar 

  46. Iafisco M, Foltran I, Sabbatini S, Tosi G, Roveri N (2012) Bioinorg Chem Appl 11:123953

    Google Scholar 

  47. Tsurupa G, Hantgan RR, Burton RA, Pechik I, Tjandra N, Medved L (2009) Biochemistry 48(51):12191–12201

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Berger AJ, Linsmeier KM, Kreeger PK, Masters KS (2017) Biomaterials 141:125–135

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M (2012) Acta Biomater 8(3):1022–1036

    PubMed  CAS  Google Scholar 

  50. Giri A, Makhal A, Ghosh B, Raychaudhuri AK, Pal KS (2010) Nanoscale 2(12):2704–2709

    PubMed  CAS  Google Scholar 

  51. Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y (2006) Carbohydr Polym 63(3):367–374

    CAS  Google Scholar 

  52. Rangel-Argote M, Claudio-Rizo JA, Castellano LE, Vega-González A, Mata-Mata JL, Mendoza-Novelo B (2017) RSC Adv 7:10443–10453

    CAS  Google Scholar 

  53. Kozioł M, Targońska S, Stążka J, Kozioł-Montewka M (2014) Kardiochir Torakochirurgia Pol 11(1):21–25

    PubMed  PubMed Central  Google Scholar 

  54. Ramstedt M, Andersson BM, Shchukarev A, Sjöberg S (2004) Langmuir 20(19):8224–8229

    PubMed  CAS  Google Scholar 

  55. Zeng JN, Jiang BQ, Xiao ZQ, Li SH (2012) Adv Mater Res 366:421–424

    CAS  Google Scholar 

  56. Reyna-Urrutiaa VA, Mata-Harob V, Cauich-Rodriguez JV, Herrera-Kaoa WA, Cervantes-Uc JM (2019) Eur Polym J 117:424–433

    Google Scholar 

  57. Chiu VQ, Herin JG (2000) Environ Sci Technol 34:2029–2034

    CAS  Google Scholar 

  58. Rettner CT, Auerbach DJ (1996) J Phys Chem 100(31):13021–13033

    CAS  Google Scholar 

  59. Norskov JK (1990) Rep Prog Phys 53(10):1253–1295

    Google Scholar 

  60. San Miguel G, Lambert S, Graham NJD (2006) J Chem Technol Biotechnol 81(10):1685–1696

    CAS  Google Scholar 

  61. Inglezakis VJ, Poulopoulos SG (2006) Adsorption, ion exchange and catalysis. Elsevier, Amsterdam

    Google Scholar 

  62. Lapo B, Bou JJ, Hoyo J, Carrillo M, Peña K, Tzanov T, Sastre AM (2020) Environ Pollut 264:114409

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

NGBM thanks to the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship awarded; we also thank to the Laboratorio Nacional en Innovación y Desarrollo de Materiales Ligeros para la Industria Automotriz (LANIAUTO) for the support in SEM data, and to the Secretaría de Educación Publica (SEP) for the support for the realization of the UACOAH-PTC-453 and UACOAH-PTC-489 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús A. Claudio-Rizo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claudio-Rizo, J.A., Burciaga-Montemayor, N.G., Cano-Salazar, L.F. et al. Novel Collagen-Chitosan Based Hydrogels Reinforced with Manganite as Potential Adsorbents of Pb2+ Ions. J Polym Environ 28, 2864–2879 (2020). https://doi.org/10.1007/s10924-020-01822-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01822-8

Keywords

Navigation