Skip to main content
Log in

Aminated Acrylic Fabric Waste Derived Sorbent for Cd(II) Ion Removal from Aqueous Solutions: Mechanism, Equilibria and Kinetics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

An aminated acrylic fiber waste has been utilized as an adsorbent material for the removal of Cd(II) ions from aqueous solution after treatment of acrylic fiber waste with hydroxylamine hydrochloride under basic conditions, and characterized for surface chemistry, surface morphology and textural properties. The ability of this sorbent to adsorb Cd(II) ions was examined via batch adsorption methods, studying the effect of pH, sorbent and sorbate concentrations, as well as contact time. Results obtained confirm that this sorbent was effective for Cd(II) ion adsorption, with uptakes promoted by high active site density, however, the adsorption process is independent of sorbent surface area. The values obtained exceed those previously reported within the literature. Isotherm analysis using arrange of two- and three- parameter models, evaluated using non-linear regression methods with error analysis, showed that the Langmuir isotherm model most appropriately described the experimental data obtained, indicating mono layer adsorption occurs. Kinetic analysis using arrange of models in their non-linear forms provided mechanistic information, showing that pseudo -second-order behavior is involved. The synthesized aminated acrylic fiber waste derived sorbents offer significant potential for the removal of Cd(II) ions from aqueous solution through a mechanism of chelation between the electron- donating oxygen-and nitrogen-containing groups in the sorbent and the electron-accepting Cd(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN (2008) Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). J Hazard Mater 150(3):604–611

    CAS  PubMed  Google Scholar 

  2. Moulick D, Santra SC, Ghosh D (2018) Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol Environ Saf 152:67–77

    CAS  PubMed  Google Scholar 

  3. Meseguer VF, Ortuño JF, Aguilar MI, Pinzón-Bedoya ML, Lloréns M, Sáez J, Pérez-Marín AB (2016) Biosorption of cadmium (II) from aqueous solutions by natural and modified non-living leaves of Posidonia oceanica. Environ Sci Pollut Res 23(23):24032–24046

    CAS  Google Scholar 

  4. Ghodbane I, Nouri L, Hamdaoui O, Chiha M (2008) Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark. J Hazard Mater 152(1):148–158

    CAS  PubMed  Google Scholar 

  5. Usman A, Sallam A, Zhang M, Vithanage M, Ahmad M, Al-Farraj A, Ok YS, Abduljabbar A, Al-Wabel M (2016) Sorption process of date palm biochar for aqueous Cd (II) removal: efficiency and mechanisms. Water Air Soil Pollut 227(12):449

    Google Scholar 

  6. Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79(1–4):241–244

    CAS  PubMed  Google Scholar 

  7. Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12:353–366

    CAS  Google Scholar 

  8. Zhang S, Yu C, Liu N, Teng Y, Yin C (2019) Preparation of transparent anti-pollution cellulose carbamate regenerated cellulose membrane with high separation ability. Int J Biol Macromol 139:332–341

    CAS  PubMed  Google Scholar 

  9. Gulgonul I, Çelik MS (2018) Understanding the flotation separation of Na and K feldspars in the presence of KCl through ion exchange and ion adsorption. Miner Eng 129:41–46

    CAS  Google Scholar 

  10. Li M, Xia X, Nie Z, Ma L, Liu Q (2019) Recovery of tungsten from WC–Co hard metal scraps using molten salts electrolysis. J Mater Res Technol 8(1):1440–1450

    CAS  Google Scholar 

  11. Wang T, Wang Q, Soklun H, Qu G, Xia T, Guo X, Jia H, Zhu L (2019) A green strategy for simultaneous Cu (II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation. Chem Eng J 370:1298–1309

    CAS  Google Scholar 

  12. Hasanzadeh V, Rahmanian O, Heidari M (2020) Cefixime adsorption onto activated carbon prepared by dry thermochemical activation of date fruit residues. Microchem J 152:104261

    CAS  Google Scholar 

  13. Ma L, He M, Fu P, Jiang X, Lv W, Huang Y, Liu Y, Wang H (2020) Adsorption of volatile organic compounds on modified spherical activated carbon in a new cyclonic fluidized bed. Sep Purif Technol 235:116146

    CAS  Google Scholar 

  14. Hashem A, Hussein HA, Sanousy MA, Adam E, Saad EE (2011) Monomethylolated thiourea–sawdust as a new adsorbent for removal of Hg (II) from contaminated water: equilibrium kinetic and thermodynamic studies. Polym Plast Technol Eng 50(12):1220–1230

    CAS  Google Scholar 

  15. Hashem A, Badawy SM (2015) Sesbania sesban L. biomass as a novel adsorbent for removal of Pb (II) ions from aqueous solution: non-linear and error analysis. Green Process Synth 4(3):179–190

    CAS  Google Scholar 

  16. Kwon J-S, Yun S-T, Lee J-H, Kim S-O, Jo HY (2010) Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: kinetics and equilibria of sorption. J Hazard Mater 174(1–3):307–313

    CAS  PubMed  Google Scholar 

  17. Hashem A, Hammad HA, Al-Anwar A (2016) Modified Camelorum tree particles as a new adsorbent for adsorption of Hg (II) from aqueous solutions: kinetics, thermodynamics and non-linear isotherms. Desalin Water Treat 57(50):23827–23843

    CAS  Google Scholar 

  18. Hashem A, Al-Anwar A, Nagy NM, Hussein DM, Eisa SM (2016) Isotherms and kinetic studies on adsorption of Hg (II) ions onto Ziziphus spina-christi L. from aqueous solutions. Green Process Synth 5(2):213–224

    CAS  Google Scholar 

  19. Wu Y, Fan Y, Zhang M, Ming Z, Yang S, Arkin A, Fang P (2016) Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochem Eng J 105:27–35

    CAS  Google Scholar 

  20. Xu C, Wang J, Yang T, Chen X, Liu X, Ding X (2015) Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr Polym 121:79–85

    CAS  PubMed  Google Scholar 

  21. Abdouss M, Shoushtari AM, Shamloo N, Haji A (2013) Modified PET fibres for metal ion and dye removal from aqueous media. Polym Polym Compos 21(4):251–258

    CAS  Google Scholar 

  22. Racho P, Phalathip P (2017) Modified nylon fibers with amino chelating groups for heavy metal removal. Energy Procedia 118:195–200

    CAS  Google Scholar 

  23. Abdouss M, Shoushtari MA, Haji A, Moshref B (2012) Fabrication of chelating diethylenetriaminated pan micro-and nano-fibers for heavy metal removal. Chem Ind Chem Eng Q/CICEQ 18(1):27–34

    CAS  Google Scholar 

  24. Rangabhashiyam S, Anu N, Giri Nandagopal MS, Selvaraju N (2014) Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng 2(1):398–414

    CAS  Google Scholar 

  25. Ng J, Cheung W, McKay G (2002) Equilibrium studies of the sorption of Cu (II) ions onto chitosan. J Colloid Interface Sci 255(1):64–74

    CAS  PubMed  Google Scholar 

  26. Karaca S, Gürses A, Ejder M, Açikyildiz M (2004) Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J Colloid Interface Sci 277(2):257–263

    CAS  PubMed  Google Scholar 

  27. Kapoor A, Yang R (1989) Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep Purif 3(4):187–192

    CAS  Google Scholar 

  28. Hossain M, Ngo H, Guo W (2013) Introductory of Microsoft Excel SOLVER function-spreadsheet method for isotherm and kinetics modelling of metals biosorption in water and wastewater. J Water Sustain 3:223–237

    CAS  Google Scholar 

  29. Hashem A, Badawy SM, Faraga S, Mohamed LA, Fletcher AJ, Tahaa GM (2020) Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd(II) from aqueous systems. J Environ Chem Eng 8:103966

    CAS  Google Scholar 

  30. Sing KS (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl Chem 54(11):2201–2218

    Google Scholar 

  31. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    CAS  Google Scholar 

  32. Martín-Lara MÁ, Hernáinz F, Calero M, Blázquez G, Tenorio G (2009) Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions. Biochem Eng J 44(2–3):151–159

    Google Scholar 

  33. Khalil A, Sokker HH, Al-Anwar A, Hashem A (2009) Preparation, characterization and utilization of amidoximated poly (AN/MAA)-grafted Alhagi residues for the removal of Zn (II) ions from aqueous solution. Adsorpt Sci Technol 27(4):363–382

    CAS  Google Scholar 

  34. Chen H, Zhao Y, Wang A (2007) Removal of Cu (II) from aqueous solution by adsorption onto acid-activated palygorskite. J Hazard Mater 149(2):346–354

    CAS  PubMed  Google Scholar 

  35. Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater 184(1–3):126–134

    CAS  PubMed  Google Scholar 

  36. Balkaya N, Cesur H (2008) Adsorption of cadmium from aqueous solution by phosphogypsum. Chem Eng J 140(1–3):247–254

    CAS  Google Scholar 

  37. Patterer MS, Bavasso I, Sambeth JE, Medici F (2017) Cadmium removal from acqueous solution by adsorption on spent coffee grounds. Chem Eng Trans 60:157–162

    Google Scholar 

  38. Ma F, Zhao B, Diao J (2016) Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution. Water Sci Technol 74(6):1335–1345

    CAS  PubMed  Google Scholar 

  39. Masoudi R, Moghimi H, Azin E, Taheri RA (2018) Adsorption of cadmium from aqueous solutions by novel Fe3O4-newly isolated Actinomucor sp. bio-nanoadsorbent: functional group study. Artif Cells Nanomed Biotechnol 46(sup3):S1092–S1101

    CAS  PubMed  Google Scholar 

  40. Al-Anber ZA, Matouq MAD (2008) Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J Hazard Mater 151(1):194–201

    CAS  PubMed  Google Scholar 

  41. Hasan S, Krishnaiah A, Ghosh TK, Viswanath DS, Boddu VM, Smith ED (2006) Adsorption of divalent cadmium (Cd (II)) from aqueous solutions onto chitosan-coated perlite beads. Ind Eng Chem Res 45(14):5066–5077

    CAS  Google Scholar 

  42. Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. J Hazard Mater 177(1–3):300–306

    CAS  PubMed  Google Scholar 

  43. Tajar AF, Kaghazchi T, Soleimani M (2009) Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells. J Hazard Mater 165(1–3):1159–1164

    Google Scholar 

  44. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295

    CAS  Google Scholar 

  45. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223

    CAS  Google Scholar 

  46. Freundlich H (1907) Über die adsorption in lösungen. Zeitschrift für physikalische Chemie 57(1):385–470

    CAS  Google Scholar 

  47. Temkin M (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12:327–356

    CAS  Google Scholar 

  48. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63(6):1024–1024

    CAS  Google Scholar 

  49. Toth J (1971) State equation of the solid-gas interface layers. Acta Chim Hung 69:311–328

    CAS  Google Scholar 

  50. Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16(5):490–495

    CAS  Google Scholar 

  51. Khan A, Ataullah R, Al-Haddad A (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J Colloid Interface Sci 194(1):154–165

    CAS  PubMed  Google Scholar 

  52. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  53. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    CAS  Google Scholar 

  54. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Google Scholar 

  55. Unuabonah E, Adebowale K, Olu-Owolabi B (2007) Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144(1–2):386–395

    CAS  PubMed  Google Scholar 

  56. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186(1):458–465

    CAS  PubMed  Google Scholar 

  57. Qi L, Teng F, Deng X, Zhang Y, Zhong X (2019) Experimental study on adsorption of Hg (II) with microwave-assisted alkali-modified fly ash. Powder Technol 351:153–158

    CAS  Google Scholar 

  58. Hu M, Tian H, He J (2019) Unprecedented selectivity and rapid uptake of CuS nanostructures toward Hg (II) ions. ACS Appl Mater Interfaces 11:19200–19206

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hashem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, A., Nasr, M.F., Fletcher, A.J. et al. Aminated Acrylic Fabric Waste Derived Sorbent for Cd(II) Ion Removal from Aqueous Solutions: Mechanism, Equilibria and Kinetics. J Polym Environ 29, 175–186 (2021). https://doi.org/10.1007/s10924-020-01863-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01863-z

Keywords

Navigation