Skip to main content
Log in

Cellulose Schiff Base as a Bio-based Polymer Ligand: Extraction, Modification and Metal Adsorption Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose was initially extracted from Safflower (Carthamus tinctorius L.) stem wastes and used for the preparation of a fully bio-based adsorbent polymer Schiff base (Sch) using oxidation reaction of the extracted compound. A safe cross-linked cellulose dialdehyde (CC-DA) was subsequently synthesized through epichlorohydrin (ECH) and sodium metaperiodate followed by Sch formation with p-phenylenediamine (p-PDA). All of the reactions carried out including cross-linking, oxidation, and Sch formation of the extracted cellulose were confirmed via Fourier-transform infrared spectroscopy (FTIR) study. The microstructure of the modified products was also investigated using scanning electron microscopy (SEM). The prepared modified cellulose was further characterized by X‐ray powder diffraction (XRD), mapping, energy‐dispersive X‐ray spectroscopy (EDX), CHNS, and thermogravimetric analysis (TGA). Furthermore, it was used in the removal of Pb(II) from wastewater. The effect of some factors such as pH, contact time, and adsorbent dosage was additionally examined in batch mode experiments. Maximum removal efficiency of Pb(II) reached 98.5% at pH 6 and the contact time of 15 min. The kinetic analyses revealed that the adsorptions of Pb(II) on the cellulose Sch adsorbent followed with a pseudo-second order model (R2 > 0.99). Moreover, the adsorption isotherms were well fitted with the Langmuir isotherm, suggesting that homogeneous monolayer surface adsorption that had occurred. The spontaneous and endothermic nature of the adsorption process was further settled by thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lail BA, Hamed O, Deghles A, Qasem B, Azzaoui K, Obied AA, Algarra M, Jodeh S (2019) Environ Sci Pollut Res 26:28080

    Google Scholar 

  2. Haseena M, Malik MF, Javed A, Arshad S, Asif N, Zulfiqar S, Hanif J (2017) Environ Risk Assess Remediat 1:16

    Google Scholar 

  3. Ahmad M, Ahmed S, Swami BL, Ikram S (2015) Int J Pharmacogn 2:280

    CAS  Google Scholar 

  4. Gusain R, Kumar N, Fosso-Kankeu E, Ray SS (2019) ACS Omega 4:13922

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Singha B, Das SK (2012) Environ Sci Pollut Res 19:2212

    CAS  Google Scholar 

  6. Barakat M (2011) Arab J Chem 4:361

    CAS  Google Scholar 

  7. Abdulrazak S, Hussaini K, Sani HM (2017) Appl Water Sci 7:3151

    CAS  Google Scholar 

  8. Wołowiec M, Komorowska-Kaufman M, Pruss A, Rzepa G, Bajda T (2019) Minerals 9:487

    Google Scholar 

  9. Ince M, Ince OK (2017) Int J Pure Appl Sci 3:10

    Google Scholar 

  10. Karnib M, Kabbani A, Holail H, Olama Z (2014) Energy Procedia 50:113

    CAS  Google Scholar 

  11. Maleki A (2018) Ultrason Sonochem 40:460

    CAS  PubMed  Google Scholar 

  12. Seyedi N, Saidi K, Sheibani H (2018) Catal Lett 148:277

    CAS  Google Scholar 

  13. Nejad MS, Seyedi N, Sheibani H (2019) Mater Chem Phys 238:121849

    Google Scholar 

  14. Seyedi N, Shahabi Nejad M, Saidi K, Sheibani H (2020) Appl Organomet Chem 34:e5307

    CAS  Google Scholar 

  15. Zarei M, Seyedi N, Maghsoudi S, Nejad MS, Sheibani H (2020) Inorg Chem Commun 2:108327

    Google Scholar 

  16. Zarei M, Seyedi N, Maghsoudi S, Shahabi Nejad M, Sheibani H (2020) J Chin Chem Soc 1:1

    Google Scholar 

  17. Erdem E, Karapinar N, Donat R (2004) J Colloid Interface Sci 280:309

    CAS  PubMed  Google Scholar 

  18. Salavati-Niasari M, Shakouri-Arani M, Davar F (2008) Microporous Mesoporous Mater 116(1–3):77–85

    CAS  Google Scholar 

  19. Mortazavi-Derazkola S, Zinatloo-Ajabshir S, Salavati-Niasari M (2015) Ceram Int 41:9593

    CAS  Google Scholar 

  20. Najafian A, Rabbani M, Rahimi R, Deilamkamar M, Maleki A (2015) Solid State Sci 46:7

    CAS  Google Scholar 

  21. Al-Jlil SA (2010) Trends Appl Sci Res 5:138

    CAS  Google Scholar 

  22. Hajizadeh Z, Valadi K, Taheri-Ledari R, Maleki A (2020) Chem Sel 5:2441

    CAS  Google Scholar 

  23. Wang L, Hu G, Lyu F, Yue T, Tang H, Han H, Yang Y, Liu R, Sun W (2019) Minerals 9:281

    Google Scholar 

  24. El-Kafrawy AF, El-Saeed SM, Farag RK, El-Saied HAA, Abdel-Raouf MES (2017) Egypt J Pet 26:23

    Google Scholar 

  25. Maleki A, Mohammad M, Emdadi Z, Asim N, Azizi M, Safaei J (2020) Arab J Chem 13:3017

    CAS  Google Scholar 

  26. Maleki A, Hajizadeh Z, Sharifi V, Emdadi ZA (2019) J Clean Prod 215:1233

    CAS  Google Scholar 

  27. Emdadi Z, Asim N, Amin MH, Ambar Yarmo M, Maleki A, Azizi M, Sopian K (2017) Appl Sci 7:514

    Google Scholar 

  28. Al-Harahsheh MS, Al Zboon K, Al-Makhadmeh L, Hararah M, Mahasneh M (2015) J Environ Chem Eng 3:1669

    CAS  Google Scholar 

  29. Sekhar KC, Kamala C, Chary N, Anjaneyulu Y (2003) Int J Miner Process 68:37

    Google Scholar 

  30. Esmaeili E, Salavati-Niasari M, Mohandes F, Davar F, Seyghalkar H (2011) Chem Eng J 170:278

    CAS  Google Scholar 

  31. Salavati-Niasari M, Davar F, Fereshteh Z (2009) Chem Eng J 146:498

    CAS  Google Scholar 

  32. Salavati-Niasari M, Banitaba SH (2003) J Mol Catal A Chem 201:43

    CAS  Google Scholar 

  33. Maleki A, Rahimi R, Maleki S (2016) Environ Chem Lett 14:195

    CAS  Google Scholar 

  34. Rabbani M, Bathaee H, Rahimi R, Maleki A (2016) Desalin Water Treat 57:25848

    CAS  Google Scholar 

  35. Ahmadian-Fard-Fini S, Ghanbari D, Salavati-Niasari M (2019) Compos Part B Eng 161:564

    CAS  Google Scholar 

  36. Ahmadian-Fard-Fini S, Ghanbari D, Amiri O, Salavati-Niasari M (2020) Carbohydr Polym 229:115428

    CAS  PubMed  Google Scholar 

  37. Rostami-Vartooni A, Nasrollahzadeh M, Salavati-Niasari M, Atarod M (2016) J Alloys Compd 689:15

    CAS  Google Scholar 

  38. Salavati-Niasari M, Farzaneh F, Ghandi M (2020) J Mol Catal A Chem 186:101

    Google Scholar 

  39. Salavati-Niasari M, Hasanalian J, Najafian H (2004) J Mol Catal A Chem 209:209

    CAS  Google Scholar 

  40. Singha A, Guleria A (2014) Int J Biol Macromol 67:409

    CAS  PubMed  Google Scholar 

  41. Zahedifar M, Shirani M, Akbari A, Seyedi N (2019) Cellulose 26:6797

    CAS  Google Scholar 

  42. Mohanty A, Drzal LT, Misra M (2002) J Polym Environ 10:19–26

    CAS  Google Scholar 

  43. Klemm D, Fink HP, Heublein B, Bohn A (2005) Angew Chem Int 44:3358

    CAS  Google Scholar 

  44. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Adv Ind Eng Polym Res 3:27

    Google Scholar 

  45. Zhang C, Su J, Zhu H, Xiong J, Liu X, Li D, Chen Y, Li Y (2017) RSC Adv 7:34182

    CAS  Google Scholar 

  46. Jamshaid A, Hamid A, Muhammad N, Naseer A, Ghaur M, Iqbal J, Rafiq S, Shah NS (2017) ChemBioEng Rev 4:240

    CAS  Google Scholar 

  47. Gao X, Zhang H, Chen K, Zhou J, Liu Q (2018) Cellulose 25:2531

    CAS  Google Scholar 

  48. Strong EB, Kirschbaum CW, Martinez AW, Martinez NW (2018) Cellulose 25:3211

    CAS  Google Scholar 

  49. Errokh A, Magnin A, Putaux JL, Boufi S (2018) Cellulose 25:3899

    CAS  Google Scholar 

  50. Chen D, van de Ven TGM (2016) Cellulose 23:1051

    CAS  Google Scholar 

  51. Kim UJ, Ro Lee Y, Kang TH, Weon Choi J, Kimura S, Wada M (2017) Carbohydr Polym 163:34

    CAS  PubMed  Google Scholar 

  52. Saravanan R, Ravikumar L (2017) Water Environ Res 89:629

    CAS  PubMed  Google Scholar 

  53. Naeimi A, Honarmand M, Omid J (2018) Cell Chem Technol 52:5

    Google Scholar 

  54. Zhang S, Liu B, Hu D, Zhang S, Pei Y, Gong Z (2020) Anal Chim Acta 1139:189

    CAS  PubMed  Google Scholar 

  55. Mehdaoui R, Chaabane L, Beyou E, Baouab MHV (2019) J Iran Chem Soc 16:645

    CAS  Google Scholar 

  56. Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) J Polym Environ 18:355

    CAS  Google Scholar 

  57. Kadumudi FB, Trifol J, Jahanshahi M, Zsurzsan TG, Mehrali M, Zeqiraj E, Shaki H, Alehosseini M, Gundlach C, Li Q, Dong M (2020). ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c15326

    Article  PubMed  Google Scholar 

  58. Ciolacu D, Ciolacu F, Popa VI (2011) Cellul Chem Technol 45:13

    CAS  Google Scholar 

  59. Naiya TK, Bhattacharya AK, Das SK (2009) J Colloid Interface Sci 333:14–26

    CAS  PubMed  Google Scholar 

  60. Kadirvelu K, Namasivayam C (2003) Adv Environ Res 7:471

    CAS  Google Scholar 

  61. Ramesh A, Hasegawa H, Maki T, Ueda K (2007) Sep Purif Technol 56:90

    CAS  Google Scholar 

  62. Ho YS, Mckay G (1998) Chem Eng J 70:115

    CAS  Google Scholar 

  63. Tütem E, Apak MR, Unal ÇF (1998) Water Res 32:2315

    Google Scholar 

  64. Ho YS, Mckay G (1999) Process Biochem 34:451

    CAS  Google Scholar 

  65. Yang X, Al-Duri BA (2005) J Colloid Interface Sci 287:25

    CAS  PubMed  Google Scholar 

  66. Rao MM, Chandra Purna GP, Seshaiah K, Nette VC, Wang M (2008) Waste Manag 28:849

    CAS  PubMed  Google Scholar 

  67. Ho YS, Mckay G (1998) Process Saf Environ 76:332

    CAS  Google Scholar 

  68. Brdar M, Šćíban MB, Takaĉi AA, Došenović TM (2012) Chem Eng J 183:108

    CAS  Google Scholar 

  69. Freundlich H (1906) J Phys Chem 57:385–471

    CAS  Google Scholar 

  70. Ma Z, Kotaki M, Ramakrishna SA (2005) J Membr Sci 265:115

    CAS  Google Scholar 

  71. Wang Z, Mao M, Wang X, Li S, Liu Y, Yang G (2020) Carbohydr Polym 232:115781

    CAS  PubMed  Google Scholar 

  72. Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Clean Technol Environ 16:385–393

    CAS  Google Scholar 

  73. Gyananath G, Balhal D (2012) Cell Chem Technol 46:121

    CAS  Google Scholar 

  74. Tirtom VN, Dinçer A, Becerik S, Aydemir T, Celik A (2012) Desalin Water Treat 39:76

    CAS  Google Scholar 

  75. Shukla SR, Pai RS (2005) J Chem Technol Biotechnol 80:176

    CAS  Google Scholar 

  76. O’Connell DW, Birkinshaw C, O’Dwyer TF (2006) Adsorpt Sci Technol 24:337

    Google Scholar 

  77. Aoki N, Fukushima K, Kurakata H, Sakamoto M, Furuhata K (1999) React Funct Polym 42:223

    CAS  Google Scholar 

  78. Zhao G, Zhang H, Fan Q, Ren X, Li J, Chen Y, Wang X (2010) J Hazard Mater 173:661

    CAS  PubMed  Google Scholar 

  79. Argun ME, Dursun S, Özdemir C, Karatas M (2007) J Hazard Mater 141:77

    CAS  PubMed  Google Scholar 

  80. Dos Reis LGT, Robaina NF, Pacheco WF, Cassella RJ (2011) Chem Eng 171:532

    Google Scholar 

  81. Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W (2003) Chemosphere 53:655

    CAS  PubMed  Google Scholar 

  82. Zhou D, Zhang L, Guo S (2005) Water Res 39:3755

    CAS  PubMed  Google Scholar 

  83. Chen Q, Zheng J, Wen L, Yang C, Zhang LA (2019) Chemosphere 224:509

    CAS  PubMed  Google Scholar 

  84. Kozuch S, Martin JM (2012) ACS Catal 2:2787

    CAS  Google Scholar 

  85. Kozuch S (2012) Comput Mol Sci 2:795

    CAS  Google Scholar 

  86. Kozuch S, Shaik S (2008) J Phys Chem A 112:6032

    CAS  PubMed  Google Scholar 

  87. Dhiman M, Chalke B, Polshettiwar V (2017) J Mater Chem 5:1935

    CAS  Google Scholar 

  88. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Acc Chem 46:1740

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding authors

Correspondence to Neda Seyedi or Gholam Hossein Zohuri.

Ethics declarations

Conflict of interest

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1687 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawhid, O., Seyedi, N., Zohuri, G.H. et al. Cellulose Schiff Base as a Bio-based Polymer Ligand: Extraction, Modification and Metal Adsorption Study. J Polym Environ 29, 1860–1868 (2021). https://doi.org/10.1007/s10924-020-02002-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02002-4

Keywords

Navigation