Skip to main content
Log in

Preparation, Characterization and Properties of Biodegradable Composites from Bamboo Fibers—Mechanical and Morphological Study

  • Brief Communication
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The realization for the conservation of environment, especially from the contaminations caused as a result of disposal of non-biodegradable waste, compelled researchers to search environment friendly materials as a substitute to these toxic materials. The present research work focuses on the effective usage of cellulose nanocrystals extracted from bamboo fibers as a reinforcement in PLA/PBS polymeric blend. Polymer blend composites were fabricated using the hot-pressing technique with varying cellulose nanocrystalline content. The morphological and mechanical properties of the composite samples were investigated; the results revealed that there was a positive effect of incorporation of cellulose nanocrystals (extracted from bamboo fibers) on the properties of the polymer matrix. The resultant biopolymer composite has one of its potential applications in food packaging where non-toxic and biodegradable materials are highly required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Valodkar M, Thakore S (2010) Thermal and mechanical properties of natural rubber and starch nanobiocomposites. Int J Polym Anal Charact 15:387–395. https://doi.org/10.1080/1023666X.2010.500543

    Article  Google Scholar 

  2. Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421. https://doi.org/10.1007/s10924-011-0389-y

    Article  CAS  Google Scholar 

  3. Singha AS, Thakur VK (2009) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58. https://doi.org/10.1007/s12034-009-0008-x

    Article  CAS  Google Scholar 

  4. Thakur VK, Singha AS (2010) Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polym - Plast Technol Eng 49:694–700. https://doi.org/10.1080/03602551003682067

    Article  CAS  Google Scholar 

  5. Singha AS, Thakur VK (2010) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709. https://doi.org/10.1177/0731684408100354

    Article  CAS  Google Scholar 

  6. Shanmugarajah B, Kiew PL, Chew IML et al (2015) Isolation of Nanocrystalline Cellulose (NCC) from palm oil empty fruit bunch (EFB): Preliminary result on FTIR and DLS analysis. Chem Eng Trans 45:1705–1710. https://doi.org/10.3303/CET1545285

    Article  Google Scholar 

  7. Rasheed M, Jawaid M, Karim Z, Abdullah LC (2020) Morphological, physiochemical and thermal properties of microcrystalline cellulose (MCC) extracted from bamboo fiber. Molecules. https://doi.org/10.3390/molecules25122824

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu D, Zhong T, Chang PR et al (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101:2529–2536. https://doi.org/10.1016/j.biortech.2009.11.058

    Article  CAS  PubMed  Google Scholar 

  9. Chaiwutthinan P, Chuayjuljit S, Leejarkpai T (2012) Use of microcrystalline cellulose prepared from cotton fabric waste to prepare poly(butylene succinate) composites. Adv Mater Res 356–360:430–434

    Google Scholar 

  10. Chin SC, Tee KF, Tong FS et al (2020) Thermal and mechanical properties of bamboo fiber reinforced composites. Mater Today Commun 23:100876. https://doi.org/10.1016/j.mtcomm.2019.100876

    Article  CAS  Google Scholar 

  11. Le Phuong HA, Izzati Ayob NA, Blanford CF et al (2019) Nonwoven membrane supports from renewable resources: bamboo fiber reinforced poly(lactic acid) composites. ACS Sustain ChemEng 7:11885–11893. https://doi.org/10.1021/acssuschemeng.9b02516

    Article  CAS  Google Scholar 

  12. Abdul Khalil HPS, Bhat IUH, Jawaid M et al (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368. https://doi.org/10.1016/j.matdes.2012.06.015

    Article  CAS  Google Scholar 

  13. Rasheed M, Jawaid M, Bisma Parveez AZ (2020) Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. Int J BiolMacromol. https://doi.org/10.1016/j.bbamem.2019.183135

    Article  Google Scholar 

  14. Rasheed M (2021) Mohammad Jawaid and BP (2021) Bamboo fiber based cellulose nanocrystals/poly(lactic acid) /poly(butylene succinate) nanocomposites: morphological, mechanical and thermal properties. Polym 13:1–15

    Google Scholar 

  15. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079. https://doi.org/10.1016/j.pmatsci.2005.05.002

    Article  CAS  Google Scholar 

  16. Luckachan GE, Pillai CKS (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19:637–676. https://doi.org/10.1007/s10924-011-0317-1

    Article  CAS  Google Scholar 

  17. Yang KK, Wang XL, Wang YZ (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500

    CAS  Google Scholar 

  18. Fang Q, Hanna MA (1999) Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod 10:47–53. https://doi.org/10.1016/S0926-6690(99)00009-6

    Article  CAS  Google Scholar 

  19. Coltelli MB, Mallegni N, Rizzo S et al (2019) Improved impact properties in poly(lactic acid) (PLA) blends containing cellulose acetate (CA) prepared by reactive extrusion. Materials (Basel). https://doi.org/10.3390/ma12020270

    Article  PubMed Central  Google Scholar 

  20. Eom Y, Choi B, Park S (2019) A study on mechanical and thermal properties of PLA/PEO blends. J Polym Environ 27:256–262. https://doi.org/10.1007/s10924-018-1344-y

    Article  CAS  Google Scholar 

  21. Courgneau C, Domenek S, Guinault A et al (2011) Analysis of the structure-properties relationships of different multiphase systems based on plasticized poly(Lactic Acid). J Polym Environ 19:362–371. https://doi.org/10.1007/s10924-011-0285-5

    Article  CAS  Google Scholar 

  22. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025. https://doi.org/10.1002/app.21779

    Article  CAS  Google Scholar 

  23. Chaiwutthinan P, Pimpan V, Chuayjuljit S, Leejarkpai T (2015) Biodegradable plastics prepared from poly(lactic acid), poly(butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. J Polym Environ 23:114–125. https://doi.org/10.1007/s10924-014-0689-0

    Article  CAS  Google Scholar 

  24. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  25. Zhang X, Zhang Y (2015) Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride. Carbohydr Polym 134:52–59. https://doi.org/10.1016/j.carbpol.2015.07.078

    Article  CAS  PubMed  Google Scholar 

  26. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea Aust Rheol J 19:125–131

    Google Scholar 

  27. Luzi F, Fortunati E, Jiménez A et al (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289. https://doi.org/10.1016/j.indcrop.2016.01.045

    Article  CAS  Google Scholar 

  28. Stepanova M, Averianov I, Serdobintsev M et al (2019) PGlu-Modified nanocrystalline cellulose improves mechanical properties, biocompatibility, and mineralization of polyester-based composites. Materials (Basel) 12:3435

    Article  CAS  Google Scholar 

  29. Homklin R, Hongsriphan N (2013) Mechanical and thermal properties of PLA/PBS cocontinuous blends adding nucleating agent. Energy Procedia 34:871–879. https://doi.org/10.1016/j.egypro.2013.06.824

    Article  CAS  Google Scholar 

  30. Luis Orellana J, Wichhart D, Kitchens CL (2018) Mechanical and optical properties of polylactic acid films containing surfactant-modified cellulose nanocrystals. J Nanomater. https://doi.org/10.1155/2018/7124260

    Article  Google Scholar 

  31. Muiruri JK, Liu S, Teo WS et al (2017) Highly biodegradable and tough polylactic acid-cellulose nanocrystal composite. ACS Sustain ChemEng 5:3929–3937. https://doi.org/10.1021/acssuschemeng.6b03123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Malaysian Industry-Government Group for High Technology (MIGHT) for Financial support of this work under Newton-Ungku Omar Fund (Grant No. 6300873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, M., Jawaid, M. & Parveez, B. Preparation, Characterization and Properties of Biodegradable Composites from Bamboo Fibers—Mechanical and Morphological Study. J Polym Environ 29, 4120–4126 (2021). https://doi.org/10.1007/s10924-021-02158-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02158-7

Keywords

Navigation