Skip to main content

Advertisement

Log in

Morphology, Chemical Characterization and Sources of Microplastics in a Coastal City in the Equatorial Zone with Diverse Anthropogenic Activities (Fortaleza city, Brazil)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of the present study was to perform morphological and chemical characterizations of microplastics (MPs) found in seawater samples from the coast of the city of Fortaleza (CE) using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy and differential scanning calorimetry (DSC). Sampling was performed using a neuston sampler. MPs were separated based on the difference in density. MPs with varied morphologies were found. Fibers and fragments were the most abundant (57% and 36.2%, respectively). FTIR, Raman spectroscopy and DSC confirmed the presence of polyurethane and alkyd resin, polyethylene, polypropylene, polystyrene, polyamide blends, thermoplastic rubber and polyester fibers. The main sources of MPs and their relative contribution were fishing activities, food packaging and household products with 55.1%, household laundry with 27.2%, wear of surface coatings with 10.0% and wear of automobile tires with 7.6%. As a result, polyethylene, polypropylene, polystyrene and polyamide are believed to enter the marine environment mainly through fishing activities and debris from food packaging, polyester mainly through domestic sewage contaminated by washing clothes fibers, polyurethane and alkyd resin from the abrasive wear of surface coatings, as well as rubber particles from the wear of the automobile tires. Thus, one may infer that the main sources of MPs in the marine environment on the coast of Fortaleza are anthropogenic activities. Additionally, there is less information on blends and weathered MPs in commercial polymer databases. Therefore, the MP spectra obtained in this study can serve as a database to compare and characterize these more complex MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:1–5. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  Google Scholar 

  2. de Wit W, Hamilton A, Scheer R, Stakes T, Allan S (2019) Por solucionar a poluição plástica: transparência e responsabilização, Genebra. https://jornalismosocioambiental.files.wordpress.com/2019/03/plastic_report_02-2019.pdf.

  3. G.M.R.C.M.& S.G (2019) PlasticsEurope, Plastics—the Facts 2019, Brussels. https://www.plasticseurope.org/en/resources/market-data

  4. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank, Washington, DC. https://doi.org/10.1596/978-1-4648-1329-0

    Book  Google Scholar 

  5. Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11. https://doi.org/10.1016/j.marenvres.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  6. Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17:1513–1521. https://doi.org/10.1039/C5EM00207A

    Article  CAS  PubMed  Google Scholar 

  7. Canevarolo Jr SV (2006) Ciência dos polímeros: um texto básico para tecnólogos e engenheiros, 2nd edn. Artliber Editora Ltda., São Paulo

  8. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  PubMed  Google Scholar 

  9. Thompson RC (2004) Lost at sea: where is all the plastic? Science (80-) 304:838–838. https://doi.org/10.1126/science.1094559

    Article  CAS  Google Scholar 

  10. Arthur C, Baker J, Bamford H (eds) (2009) Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris, Washington, DC. www.MarineDebris.noaa.gov. Accessed 11 Aug 2021

  11. Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn KJ, Voit B (2016) Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem 408:8377–8391. https://doi.org/10.1007/s00216-016-9956-3

    Article  CAS  PubMed  Google Scholar 

  12. Anger PM, von der Esch E, Baumann T, Elsner M, Niessner R, Ivleva NP (2018) Raman microspectroscopy as a tool for microplastic particle analysis. TrAC Trends Anal Chem 109:214–226. https://doi.org/10.1016/j.trac.2018.10.010

    Article  CAS  Google Scholar 

  13. Auta H, Emenike C, Fauziah S (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  15. Coppock RL, Cole M, Lindeque PK, Queirós AM, Galloway TS (2017) A small-scale, portable method for extracting microplastics from marine sediments. Environ Pollut 230:829–837. https://doi.org/10.1016/j.envpol.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  16. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B 364:2027–2045. https://doi.org/10.1098/rstb.2008.0284

    Article  CAS  Google Scholar 

  17. Guo X, Wang J (2019) The chemical behaviors of microplastics in marine environment: a review. Mar Pollut Bull 142:1–14. https://doi.org/10.1016/j.marpolbul.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  18. Silva AB, Bastos AS, Justino CIL, Da Costa JP, Duarte AC, Rocha-Santos TAP (2018) Microplastics in the environment: challenges in analytical chemistry - a review. Anal Chim Acta 1017:1–19. https://doi.org/10.1016/j.aca.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  19. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci USA 113:2430–2435. https://doi.org/10.1073/pnas.1519019113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alomar C, Estarellas F, Deudero S (2016) Microplastics in the mediterranean sea: deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar Environ Res 115:1–10. https://doi.org/10.1016/j.marenvres.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  21. J.G. of E. on the S.A. of M.E.P. GESAMP, Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment., London, 2016. http://www.gesamp.org/site/assets/files/1275/sources-fate-and-effects-of-microplastics-in-the-marine-environment-part-2-of-a-global-assessment-en.pdf.

  22. Castro RO, da Silva ML, de Araújo FV (2018) Review on microplastic studies in Brazilian aquatic ecosystems. Ocean Coast Manag 165:385–400. https://doi.org/10.1016/j.ocecoaman.2018.09.013

    Article  Google Scholar 

  23. Cavalcante RM, Pinheiro LS, Teixeira CEP, Paiva BP, Fernandes GM, Brandão DB, Frota FF, Silva Filho FJN, Schettini CAF (2020) Marine debris on a tropical coastline: abundance, predominant sources and fate in a region with multiple activities (Fortaleza, Ceará, northeastern Brazil). Waste Manag 108:13–20. https://doi.org/10.1016/j.wasman.2020.04.026

    Article  PubMed  Google Scholar 

  24. Cavalcante RM, De Andrade MVF, Marins RV, Oliveira LDM (2010) Development of a headspace-gas chromatography (HS-GC-PID-FID) method for the determination of VOCs in environmental aqueous matrices: optimization, verification and elimination of matrix effect and VOC distribution on the Fortaleza Coast, Brazil. Microchem J 96:337–343. https://doi.org/10.1016/j.microc.2010.05.014

    Article  CAS  Google Scholar 

  25. I.B. de G. e E. IBGE, População estimada, Inst. Bras. Geogr. e Estatística (2020) https://cidades.ibge.gov.br/brasil/ce/fortaleza/panorama. Accessed 18 Aug 2021

  26. J. Masura J, Baker G, Foster C, Arthur C (2015) Herring, Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA, pp 1–39

  27. Bitter H, Lackner S (2021) Fast and easy quantification of semi-crystalline microplastics in exemplary environmental matrices by differential scanning calorimetry (DSC). Chem Eng J 423:1–7. https://doi.org/10.1016/j.cej.2021.129941

    Article  CAS  Google Scholar 

  28. Majewsky M, Bitter H, Eiche E, Horn H (2016) Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ 568:507–511. https://doi.org/10.1016/j.scitotenv.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  29. Rozman U, Turk T, Skalar T, Zupančič M, Čelan Korošin N, Marinšek M, Olivero-Verbel J, Kalčíková G (2021) An extensive characterization of various environmentally relevant microplastics—material properties, leaching and ecotoxicity testing. Sci Total Environ 773:1–10. https://doi.org/10.1016/j.scitotenv.2021.145576

    Article  CAS  Google Scholar 

  30. Menéndez-Pedriza A, Jaumot L (2020) Microplastics: a critical review of sorption factors. Toxics 8:1–40. https://doi.org/10.3390/toxics8020040

    Article  CAS  Google Scholar 

  31. Song YK, Hong SH, Jang M, Han GM, Jung SW, Shim WJ (2017) Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ Sci Technol 51:4368–4376. https://doi.org/10.1021/acs.est.6b06155

    Article  CAS  PubMed  Google Scholar 

  32. Ross PS, Chastain S, Vassilenko E, Etemadifar A, Zimmermann S, Quesnel S-A, Eert J, Solomon E, Patankar S, Posacka AM, Williams B (2021) Pervasive distribution of polyester fibres in the Arctic ocean is driven by Atlantic inputs. Nat Commun 12:106. https://doi.org/10.1038/s41467-020-20347-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia TM, Campos CC, Mota EM, Santos NM, de SantanaCampelo RP, Prado LC, Junior MM, de OliveiraSoares M (2020) Microplastics in subsurface waters of the western equatorial Atlantic (Brazil). Mar Pollut Bull 1(150):110705. https://doi.org/10.1016/j.marpolbul.2019.110705

    Article  CAS  Google Scholar 

  34. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. https://doi.org/10.1021/es2031505

    Article  CAS  PubMed  Google Scholar 

  35. Bell SEJ, Fido LA, Speers SJ, Armstrong WJ, Spratt S (2005) Forensic analysis of architectural finishes using Fourier transform infrared and Raman spectroscopy, part I: the resin bases. Appl Spectrosc 59:1333–1339

    Article  CAS  PubMed  Google Scholar 

  36. Chércoles Asensio R, Moya MSA, de la Roja JM, Gómez M (2009) Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal Bioanal Chem 395:2081–2096. https://doi.org/10.1007/s00216-009-3201-2

    Article  CAS  PubMed  Google Scholar 

  37. Ong HR, Khan MMR, Ramli R, Rahman MW, Yunus RM (2015) Tailoring base catalyzed synthesis of palm oil based alkyd resin through CuO nanoparticles. RSC Adv 5:95894–95902. https://doi.org/10.1039/C5RA19575F

    Article  CAS  Google Scholar 

  38. Defeyt C, Langenbacher J, Rivenc R (2017) Polyurethane coatings used in twentieth century outdoor painted sculptures. Part I: comparative study of various systems by means of ATR-FTIR spectroscopy. Herit Sci 5:11. https://doi.org/10.1186/s40494-017-0124-7

    Article  CAS  Google Scholar 

  39. Passauer L (2021) A case study on the thermal degradation of an acrylate-type polyurethane wood coating using thermogravimetry coupled with evolved gas analysis. Prog Org Coat 157:1–12. https://doi.org/10.1016/j.porgcoat.2021.106331

    Article  CAS  Google Scholar 

  40. Lenz R, Enders K, Stedmon CA, MacKenzie DMA, Nielsen TG (2015) A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull 100:82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026

    Article  CAS  PubMed  Google Scholar 

  41. Jovičić M, Radičević R, Pavličević J, Bera O, Govedarica D (2020) Synthesis and characterization of ricinoleic acid based hyperbranched alkyds for coating application. Prog Org Coat 148:1–14. https://doi.org/10.1016/j.porgcoat.2020.105832

    Article  CAS  Google Scholar 

  42. Billmeyer FW Jr (1984) Textbook of polymer science, 3rd edn. Wiley-lnterscience, New York

    Google Scholar 

  43. Nosal H, Nowicki J, Warzała M, Semeniuk I, Sabura E (2016) Synthesis and characterization of alkyd resins based on Camelina sativa oil, glycerol and selected epoxidized vegetable oils as functional modifiers. Prog Org Coat 101:553–568. https://doi.org/10.1016/j.porgcoat.2016.10.003

    Article  CAS  Google Scholar 

  44. Deyab MA, Mele G, Al-Sabagh AM, Bloise E, Lomonaco D, Mazzetto SE, Clemente CDS (2017) Synthesis and characteristics of alkyd resin/M-porphyrins nanocomposite for corrosion protection application. Prog Org Coatings 105:286–290. https://doi.org/10.1016/j.porgcoat.2017.01.008

    Article  CAS  Google Scholar 

  45. Swann MH (1953) Determination of polystyrene in styrenated alkyd and styrenated epoxy resins. Anal Chem 25:1735–1737. https://doi.org/10.1021/ac60083a039

    Article  CAS  Google Scholar 

  46. Foti D, Passialis C, Voulgaridis E, Adamopoulos S (2021) Water repellency of cellulosic fibrous mats impregnated with organic solutions based on recycled polystyrene. J Renew Mater 9:85–96. https://doi.org/10.32604/jrm.2021.011868

    Article  CAS  Google Scholar 

  47. Jung MR, Horgen FD, Orski SV, Rodriguez V, Beers KL, Balazs GH, Jones TT, Work TM, Brignac KC, Royer SJ, Hyrenbach KD (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 127:704–16. https://doi.org/10.1016/j.marpolbul.2017.12.061

    Article  CAS  PubMed  Google Scholar 

  48. Formela K, Wołosiak M, Klein M, Wang S (2016) Characterization of volatile compounds, structural, thermal and physico-mechanical properties of cross-linked polyethylene foams degraded thermo-mechanically at variable times. Polym Degrad Stab 134:383–393. https://doi.org/10.1016/j.polymdegradstab.2016.11.011

    Article  CAS  Google Scholar 

  49. Wang J, Peng J, Tan Z, Gao Y, Zhan Z, Chen Q, Cai L (2017) Microplastics in the surface sediments from the Beijiang river littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171:248–258. https://doi.org/10.1016/j.chemosphere.2016.12.074

    Article  CAS  PubMed  Google Scholar 

  50. de SLM Paiva Júnior, de Melo SLS (2017) Estudo do processo de reciclagem do polietileno para produção de blendas. In: 72 Congr. Anu. Da ABM, Editora Edgard Blucher, Ltda., São Paulo, pp 879–886. https://doi.org/10.5151/1516-392x-30343

  51. Liu P, Zhan X, Wu X, Li J, Wang H, Gao S (2020) Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere 242:125193. https://doi.org/10.1016/j.chemosphere.2019.125193

    Article  CAS  PubMed  Google Scholar 

  52. Gary BC, Costa AM, Bragil AF, Costa W (2018) Estudo térmico do PEAD e PEBD através de análise térmica differenctial scanning calorimeter (DSC). https://oswaldocruz.br/revista_academica/content/pdf/Edicao_20_BRUNO_C_GARY.pdf. Accessed 20 June 2021

  53. Anghelone M, Jembrih-Simbürger D, Schreiner M (2015) Identification of copper phthalocyanine blue polymorphs in unaged and aged paint systems by means of micro-Raman spectroscopy and Random Forest. Spectrochim. Acta Part A 149:419–425. https://doi.org/10.1016/j.saa.2015.04.094

    Article  CAS  Google Scholar 

  54. Scherrer NC, Stefan Z, Francoise D, Annette F, Renate K (2009) Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim Acta Part A 73:505–524. https://doi.org/10.1016/j.saa.2008.11.029

    Article  CAS  Google Scholar 

  55. Ropret P, Centeno SA, Bukovec P (2008) Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies. Spectrochim Acta Part A 69:486–497. https://doi.org/10.1016/j.saa.2007.03.050

    Article  CAS  Google Scholar 

  56. Munno K, De Frond H, Odonnell B, Rochman CM (2020) Increasing the accessibility for characterizing microplastics: introducing new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal Chem 92:2443–2451. https://doi.org/10.1021/acs.analchem.9b03626

    Article  CAS  PubMed  Google Scholar 

  57. Karami A, Golieskardi A, Bin Ho Y, Larat V, Salamatinia B (2017) Microplastics in eviscerated flesh and excised organs of dried fish. Sci Rep 7:54–73. https://doi.org/10.1038/s41598-017-05828-6

    Article  CAS  Google Scholar 

  58. Dong M, Zhang Q, Xing X, Chen W, She Z, Luo Z (2020) A Raman database of microplastics weathered under natural environments. Sci Total Environ 739:1–9. https://doi.org/10.17632/KPYGRF9FG6.2

    Article  Google Scholar 

  59. Zhao S, Danley M, Ward JE, Li D, Mincer TJ (2017) An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal Methods 9:1470–1478. https://doi.org/10.1039/C6AY02302A

    Article  CAS  Google Scholar 

  60. Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer (Guildf) 43:2671–2676. https://doi.org/10.1016/S0032-3861(02)00053-8

    Article  CAS  Google Scholar 

  61. Snyder RG, Schachtschneider JH (1964) Valence force calculation of the vibrational spectra of crystalline isotactic polypropylene and some deuterated polypropylenes. Spectrochim Acta 20:853–869. https://doi.org/10.1016/0371-1951(64)80084-9

    Article  CAS  Google Scholar 

  62. de Santos RPO (2012) Compósitos baseados em PET reciclado, fibras de sisal e plasticizantes oriundos de fontes renováveis: estudo do processamento e propriedades destes materiais. Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo. https://doi.org/10.11606/D.88.2012.tde-26072012-163329.

  63. Samarth N, Mahanwar P (2018) Study and characterization of LLDPE/polyolefin elastomer and LLDPE/EPDM blend: effect of chlorinated water on blend performance. Mater Today Proc 5:22433–22446. https://doi.org/10.1016/j.matpr.2018.06.613

    Article  CAS  Google Scholar 

  64. Brydson JA (2017) Brydson’s plastics materials, 8th edn. Matthew Deans, Oxford. https://doi.org/10.1016/C2014-0-02399-4

    Book  Google Scholar 

  65. Barra GMO, Roeder J, Soldi V, Pires ATN, Agnelli JAM (2003) Blendas de poliamida 6/elastômero: propriedades e influência da adição de agente compatibilizante. Polímeros 13:95–101. https://doi.org/10.1590/S0104-14282003000200006

    Article  CAS  Google Scholar 

  66. Schramm C (2020) High temperature ATR-FTIR characterization of the interaction of polycarboxylic acids and organotrialkoxysilanes with cellulosic material. Spectrochim Acta Part A 243:118–815. https://doi.org/10.1016/j.saa.2020.118815

    Article  CAS  Google Scholar 

  67. Silva GS (2007) Preparação e caracterização de tecidos tratados com polianilina condutora recobertas com borracha natural, Universidade Estadual Paulista (UNESP). https://repositorio.unesp.br/handle/11449/88459. Accessed 16 June 2021

  68. Dönmez Çavdar A, Tomak ED, Boran Torun S, Arpaci SS (2021) Accelerated weathering resistance of high-density polyethylene composites reinforced with microcrystalline cellulose and fire retardants. J Build Eng 39:1–9. https://doi.org/10.1016/j.jobe.2021.102282

    Article  Google Scholar 

  69. Tsujiyama S, Miyamori A (2000) Assignment of DSC thermograms of wood and its components. Thermochim Acta 351:177–181. https://doi.org/10.1016/S0040-6031(00)00429-9

    Article  CAS  Google Scholar 

  70. Bledzki AKK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  CAS  Google Scholar 

  71. Puglia D, Biagiotti J, Kenny JM (2005) A review on natural fibre-based composites—part II. J Nat Fibers 1:23–65. https://doi.org/10.1300/J395v01n03_03

    Article  CAS  Google Scholar 

  72. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418. https://doi.org/10.1016/j.progpolymsci.2006.05.003

    Article  CAS  Google Scholar 

  73. Dall’Antonia AC, Martins MA, Moreno RMB, Mattoso LHC, Gongalves PS, Job AE (2009) Mechanical and thermal characterization of compounds of natural rubber of the clones: GT 1, IAN 873, PB 235 and RRIM 600. Polim Ciência Tecnol 19:63–71. https://doi.org/10.1590/s0104-14282009000100015

    Article  Google Scholar 

  74. Karabork F, Pehlivan E, Akdemir A (2014) Characterization of styrene butadiene rubber and microwave devulcanized ground tire rubber composites. J Polym Eng 34:543–554. https://doi.org/10.1515/polyeng-2013-0330

    Article  CAS  Google Scholar 

  75. Colom X, Faliq A, Formela K, Cañavate J (2016) FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment. Polym Test 52:200–208. https://doi.org/10.1016/j.polymertesting.2016.04.020

    Article  CAS  Google Scholar 

  76. do Santos RP, de Junior MSO, da Mattos EC, Diniz MF, de Dutra RCL (2012) Caracterização por FT-IR da superfície de borracha EPDM tratada via plasma por micro-ondas. Polímeros 22: 440–446. https://doi.org/10.1590/S0104-14282012005000065

  77. Kole PJ, Löhr AJ, Van Belleghem F, Ragas A (2017) Wear and tear of tyres: a stealthy source of microplastics in the environment. Int J Environ Res Public Health 14:1–31. https://doi.org/10.3390/ijerph14101265

    Article  CAS  Google Scholar 

  78. Sataloff RT, Johns MM, Kost KM (1981) Developments in rubber technology—2: synthetic rubbers, 1st edn. Applied Science Publishers Ltd, London. https://doi.org/10.1007/978-94-009-8108-9

    Book  Google Scholar 

  79. Morton M (1987) Rubber technology, 3rd edn. Springer, Boston. https://doi.org/10.1007/978-1-4615-7823-9

    Book  Google Scholar 

  80. Baensch-Baltruschat B, Kocher B, Stock F, Reifferscheid G (2020) Tyre and road wear particles (TRWP) - a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci Total Environ 733:1–19. https://doi.org/10.1016/j.scitotenv.2020.137823

    Article  CAS  Google Scholar 

  81. Scuracchio CH, Waki DA, Da Silva MLCP (2007) Thermal analysis of ground tire rubber devulcanized by microwaves. J Therm Anal Calorim 87:893–897. https://doi.org/10.1007/s10973-005-7419-8

    Article  CAS  Google Scholar 

  82. Alexandrova O, Kaloush KE, Allen JO (2011) Impact of asphalt rubber friction course overlays on tire wear emissions and air quality models for Phoenix, Arizona, Airshed. Transp Res Rec J Transp Res Board 2007:98–106. https://doi.org/10.3141/2011-11

    Article  CAS  Google Scholar 

  83. Dehaut A, Cassone A-L, Frère L, Hermabessiere L, Himber C, Rinnert E, Rivière G, Lambert C, Soudant P, Huvet A, Duflos G, Paul-Pont I (2016) Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ Pollut 215:223–233. https://doi.org/10.1016/j.envpol.2016.05.018

    Article  CAS  PubMed  Google Scholar 

  84. Käppler A, Windrich F, Löder MGJ, Malanin M, Fischer D, Labrenz M, Eichhorn K-J, Voit B (2015) Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measurements. Anal Bioanal Chem 407:6791–6801. https://doi.org/10.1007/s00216-015-8850-8

    Article  CAS  PubMed  Google Scholar 

  85. Dong M, Zhang Q, Xing X, Chen W, She Z, Luo Z (2020) Raman spectra and surface changes of microplastics weathered under natural environments. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139990

    Article  PubMed  PubMed Central  Google Scholar 

  86. A. Carmichael, Man-made fibers continue to grow, Text. World. 2015 (2015). https://www.textileworld.com/textile-world/fiber-world/2015/02/man-made-fibers-continue-to-grow/. Accessed 17 Aug 2020

  87. Zambrano MC, Pawlak JJ, Daystar J, Ankeny M, Cheng JJ, Venditti RA (2019) Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Mar Pollut Bull 142:394–407. https://doi.org/10.1016/j.marpolbul.2019.02.062

    Article  CAS  PubMed  Google Scholar 

  88. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. https://doi.org/10.1021/es201811s

    Article  CAS  PubMed  Google Scholar 

  89. Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46:12302–12315. https://doi.org/10.1021/es3027105

    Article  CAS  PubMed  Google Scholar 

  90. Brandon J, Goldstein M, Ohman MD (2016) Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns. Mar Pollut Bull 110:299–308. https://doi.org/10.1016/j.marpolbul.2016.06.048

    Article  CAS  PubMed  Google Scholar 

  91. Song YK, Hong SH, Jang M, Kang J-H, Kwon OY, Han GM, Shim WJ (2014) Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ Sci Technol 48:9014–9021. https://doi.org/10.1021/ES501757S

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by FUNCAP project Avaliação da variabilidade espaço temporal da qualidade da água e sedimento na Praia do Futuro (Fortaleza-Ceará) (proc. n° 08069195/2019) with support from “Project Marine Protected Areas” (GEF-Mar/FUNBIO/SEMA/FCPC), I-plastics: dispersion and impacts of micro- and nanoplastics in the tropical and temperate oceans: from regional land-ocean surface to open oceans (JPI Oceans International Consortium/Funcap) and FUNCAP/PRONEM PNE-0112-00007.01.00/16. We also thank partner laboratories like: Zoobenthos Laboratory (LABOMAR/UFC); Polymer and Material Innovation Laboratory (UFC); Structural Crystallography Laboratory (UFC), Department of Physics (UFPI) and Civil Police of the State of Piauí. R.M. Cavalcante is grateful for the PQ-2 Grant (315281/2020-0-CNPq). The authors also thank CNPq, CAPES and especially to LACOr team for their energy and excitement regarding scientific work “these guys are rocking”.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rivelino M. Cavalcante.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1348 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolasco, M.E., Lemos, V.A.S., López, G. et al. Morphology, Chemical Characterization and Sources of Microplastics in a Coastal City in the Equatorial Zone with Diverse Anthropogenic Activities (Fortaleza city, Brazil). J Polym Environ 30, 2862–2874 (2022). https://doi.org/10.1007/s10924-022-02405-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02405-5

Keyword

Navigation