Skip to main content
Log in

Preparation of ZSM-5 Zeolite Honeycomb Monoliths Using Microporous Silica Obtained from Metakaolinite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Zeolite honeycomb monoliths were prepared from ZSM-5 powders synthesized under hydrothermal conditions using microporous silica obtained by selective leaching of metakaolinite. This honeycomb material was compared with those prepared using alkoxides (TEOS) as the silica source. The honeycomb monoliths were formed by extrusion of paste made from the synthesized powders through a multi-channel honeycomb die. The morphology and porous properties of these materials were studied using XRD, FTIR, SEM and N2/Ar adsorption. ZSM-5 grains in the monoliths prepared from metakaolinite showed platy morphology with preferred orientation of the crystals in the extruded surface, and displayed an absence of secondary growth. The twinned morphology of ZSM-5 crystals was observed in the monoliths prepared using TEOS and this contributed to an increase in the external surface area even though the total surface area was identical to that of samples prepared from metakaolinite. The physical properties, thermal stability and mechanical strength of the monoliths was compared with zeolite-coated honeycombs. The results show that microporous silica prepared by acid leaching of metakaolinite is a cost-effective raw material for preparing ZSM-5 honeycomb monoliths with controlled morphology and tunable SiO2/Al2O3 ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otto, C.N. Montreuil, O. Todor, R.W. McCabe, and H.S. Gandhi, Ind. Eng. Chem. Res. 30, 2333 (1991).

    Article  Google Scholar 

  2. W. Held, A. Konig, T. Richter, and L.Puppe, SAE 900496, 209 (1990).

    Google Scholar 

  3. M. Iwamoto, S. Yokoo, K. Sakai, and S. Kagawa, J. Chem. Soc., Faraday Trans. 1–77, 1629 (1981).

    Google Scholar 

  4. J.L. Williams, Catalysis Today 69, 3 (2001).

    Article  Google Scholar 

  5. C.D. Madhusoodana, R.N. Das, Y. Kameshima, A. Yasumori and K. Okada, Micropor. Mesopor. Mater. 46, 249 (2001).

    Article  Google Scholar 

  6. F. Mizukami, Std. Surf. Sci. Cat. 125, 1 (1999).

    Google Scholar 

  7. J. Hedlund, S. Mintova, and J. Sterte, Micropor. Mesopor. Mater. 28, 185 (1999).

    Article  Google Scholar 

  8. I.M. Lachman and J.L. Williams, Catalysis Today 14, 317 (1992).

    Article  Google Scholar 

  9. Y.Y. Li, S.P. Perera, B.D. Crittenden, and J. Bridgwater, Powder Technology 116, 85 (2001).

    Article  Google Scholar 

  10. T. Kato, Material Integration 13, 31 (2000).

    Google Scholar 

  11. Y. S. Bhat, J. Das, and A. B. Halgeri, App. Catalysis, A: Gen 122, 161 (1995).

    Google Scholar 

  12. P.A. Jacobs and J.A. Martens, Synthesis of High Silica Aluminosilicate Zeolites (Elsevier, Amsterdam, 1987).

    Google Scholar 

  13. D.W. Breck, Zeolite Molecular Sieves Structure, Chemistry and Uses (John Wiley {&} Sons, Inc., New York, 1974).

    Google Scholar 

  14. R.M. Barrer, Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982).

    Google Scholar 

  15. M. Murat, A. Amokrane, J.P. Bastide, and L. Montanaro, Clay Min. 27, 119 (1992).

    Google Scholar 

  16. D. Akolekar, A. Chafee, and R.F. Howe, Zeolites 19, 359 (1997).

    Article  Google Scholar 

  17. S. Chandrasekhar and P.N. Pramada, J. Porous Mater. 6, 283 (1999).

    Article  Google Scholar 

  18. S. Chandrasekhar and P. N. Pramada, Ceramics International 28, 277 (2002).

    Article  Google Scholar 

  19. F.G. Dwyer. and A.B. Schwartz, US Patent 4,091,007 (1978).

  20. British Patent GB 2017520 assigned to Engelhard Min. {&} Chem. (1979).

  21. K. Okada, A. Shimai, T. Takei, S. Hayashi. A. Yasumori, and K.J.D. MacKenzie, Micropor. Mesopor. Mater. 21, 289 (1998).

    Article  Google Scholar 

  22. C.D. Madhusoodana, Y. Kameshima, A. Yasumori, and K. Okada, Clay Science 11, 369 (2001).

    Google Scholar 

  23. A. Saito and H.C. Foley, AIChE.J 37, 429 (1991).

    Article  Google Scholar 

  24. C.D. Madhusoodana, R.N. Das, A.M. Umarji, and K. Okada, Ceramic Trans. 112, 539 (2001).

    Google Scholar 

  25. J.P. Bellat, O. Bertrand, F. Bouvier, M. Broyer, V. Francois, S. Maure, and G. Weber, Std. Surf. Sci. Cat. 125, 737 (1999).

    Google Scholar 

  26. C.D. Madhusoodana, R.N. Das, Y. Kameshima, and K. Okada, Trans. Mat. Res. Soc. Japan. 29, 2293 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengala D. Madhusoodana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhusoodana, C.D., Das, R.N., Kameshima, Y. et al. Preparation of ZSM-5 Zeolite Honeycomb Monoliths Using Microporous Silica Obtained from Metakaolinite. J Porous Mater 12, 273–280 (2005). https://doi.org/10.1007/s10934-005-3125-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-005-3125-y

Keywords

Navigation