Skip to main content
Log in

Effect of aging temperature on the porosity characteristics of subcritically dried silica aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Silica aerogels were synthesised by subcritical drying technique which involves controlled solvent exchange and aging of the wet gel in silane solution followed by drying under controlled conditions. Effect of temperature of aging in silane solution on the porosity characteristics of silica aerogels and the thermal pore stability of the resultant gels were investigated. Aging in silane solution leads to an increased degree of condensation reactions, siloxane crosslinking and the dissolution and reprecipitation of silica monomers to the gel structure and enhances the total strength of the gel. Thermal aging of the wet gel have a pronounced effect on bulk density, linear drying shrinkage, surface area and pore volume. As the temperature of aging increases the bulk density decreases whereas the surface area and pore volume were found to increase. We could achieve a surface area of 1040 m2/g, pore volume 1.2 cc/g and an average pore size of 49 Å corresponding to an aging temperature of 70 °C. Thermal pore stability of the gel was found to be up to 700 °C above which densification of SiO2 gel starts. The novel findings will help in tailoring the process parameters to prepare mesoporous oxides from sol–gel precursors with specific pore features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Teichner, in Aerogels, Springer Proceedings in Physics, ed. by J. Fricke (Springer, Berlin Heidelberg New York, 1986), p. 22

  2. P. Tsou, J. Non-Cryst. Solids 186, 415 (1995)

    Article  CAS  Google Scholar 

  3. M.S. Ahmed, Y.A. Attia, J. Non-Cryst. Solids 186, 402 (1995)

    Article  CAS  Google Scholar 

  4. J. Alkemper, T. Bucholz, K. Murakami, L. Ratke, J. Non-Cryst. Solids 186, 395 (1995)

    Article  CAS  Google Scholar 

  5. R.W. Pekala, S.T. Mayer, J.L. Kaschmitter, F.M. Kong, in Sol–Gel Processing and Applications, ed. by Y.A. Attia (Plenum Press, New York, 1994), p. 369

  6. H.D. Gesser, P.C. Goswami, Chem. Rev. 89, 765 (1989)

    Article  CAS  Google Scholar 

  7. G. Hermann, R. Iden, M. Mielke, F. Teich, B. Ziegler, J.␣Non-Cryst. Solids 186, 380 (1995)

    Article  Google Scholar 

  8. B.C. Dave, B. Dunn, J.S. Valentine, J.I. Zink, Mater. Res. Soc. Symp. Proc. 431, 285 (1996)

    CAS  Google Scholar 

  9. S.J. Teichner M. Khalfallah D. Bianchi J.L. Gass, in Sol–Gel Processing and Applications, ed. by Y.A. Attia (Plenum Press, New York, 1994), p. 323

  10. J. Fricke, A. Emmerling, J. Am. Ceram. Soc. 75, 2027 (1992)

    Article  CAS  Google Scholar 

  11. M.M. Girona, E. Martinez, A. Roig, J. Esteve, E. Molins, J.␣Non-Cryst. Solids. 285, 244 (2001)

    Article  Google Scholar 

  12. M.A. Einarsrud, M.B. Kirkedelen, E. Nilsen, K. Mortensen, J. Samseth, J. Non-Cryst. Solids 231, 10 (1998)

    Article  CAS  Google Scholar 

  13. C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, New York, 1989)

    Google Scholar 

  14. R. Deshpande, D.M. Smith, C.J. Brinker, J. Non-Cryst. Solids 144, 32 (1992)

    Article  CAS  Google Scholar 

  15. M.A. Einarsrud, E. Nilsen, J. Non-Cryst. Solids 226, 122 (1998)

    Article  CAS  Google Scholar 

  16. S. Haereid, E. Nilsen, M.A. Einarsrud, J. Non-Cryst. Solids 204, 228 (1996)

    Article  CAS  Google Scholar 

  17. S. Haereid, M. Dahle, S. Lima, M.A. Einarsrud, J. Non-Cryst. Solids 186, 96 (1995)

    Article  CAS  Google Scholar 

  18. R. Takahashi, K. Nakanishi, N. Soga, J. Non-Cryst. Solids 189, 66 (1995)

    Article  CAS  Google Scholar 

  19. V. Rao, A. Parvathy Rao, M.M. Kulkarni, J. Non-Cryst. Solids 350, 224 (2004)

    Article  CAS  Google Scholar 

  20. S. Haereid, J. Anderson, M.A. Einarsrud, D.W. Hua, D.M. Smith, J. Non-Cryst. Solids 185, 221 (1995)

    Article  Google Scholar 

  21. M.K. Titulaer, J.B.H. Jansen, J.W. Geus, J. Non-Cryst. Solids 170, 11 (1994)

    Article  CAS  Google Scholar 

  22. H. Hdach, T. Woignier, J. Phalippou, G.W. Scherer, J. Non-Cryst. Solids 121, 202 (1990)

    Article  CAS  Google Scholar 

  23. P.J. Davis, R. Deshpande, D.M. Smith, C.J. Brinker, R.A. Assink, J. Non-Cryst. Solids 167, 295 (1994)

    Article  CAS  Google Scholar 

  24. E. Nilsen, V. Ranum, A. Einarsrud, J. Sol–Gel Sci. Technol. 8, 153 (1997)

    Google Scholar 

  25. S. Smitha, P. Shajesh, P.R. Aravind, S. Rajesh Kumar, P. Krishna Pillai, K.G.K. Warrier, Microporous Mesoporous Mater. 91, 286 (2006)

    Article  CAS  Google Scholar 

  26. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979)

    Google Scholar 

  27. S. Rajesh Kumar, P. Krishnapillai, K.G.K. Warrier, Polyhedron 17, 1699 (1998)

    Article  Google Scholar 

  28. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, London, 1995)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Defence Research and Development Organisation for funding the work. Authors S.S and P.S acknowledge DRDO and CSIR, respectively for their fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. K. Warrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smitha, S., Shajesh, P., Rajesh Kumar, S. et al. Effect of aging temperature on the porosity characteristics of subcritically dried silica aerogels. J Porous Mater 14, 1–6 (2007). https://doi.org/10.1007/s10934-006-9000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-9000-7

Keywords

Navigation