Skip to main content
Log in

Effect of the thermal treatment on microstructure and physical properties of low-density and high transparency silica aerogels via acetonitrile supercritical drying

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper, we reported the experimental results about the effect of the thermal treatment on microstructure and physical properties of low-density and high transparent silica aerogels. From our results, with tetramethyl orthosilicate as precursor and via acetonitrile supercritical drying process, silica aerogel monolith was obtained possessing the properties as low-density (0.018 g/cm3), high surface area (923 m2/g), high optical transparency (87.9 %, 800 nm). It should be noted that high transparency of silica aerogel can be maintained up to 600 °C (91.5 %, 800 nm). The mechanical properties of silica aerogel decreased with increasing heat treated temperature to 600 °C, and silica aerogels still maintained crack-free monoliths completely and possessed high homogeneous density even after 600 °C thermal treatment. Furthermore, thermal conductivity of the monoliths at desired temperatures was analyzed by the transient plane heat source method. When the temperature flowed from 25 to 600 °C, thermal conductivity coefficients of silica aerogels changed from 0.021 to 0.065 W (m K)−1, revealed an excellent heat insulation effect in high-temperature area. Currently, the specific process developed for low-density aerogels affected by thermal treatment has not been reported in previous literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.J. Lee, G.S. Kim, S.H. Hyun, J. Mat. Sci. 37, 2237 (2002)

    Article  CAS  Google Scholar 

  2. L.W. Hrubesh, J. Non-Cryst.Solids 225, 335 (1998)

    Article  CAS  Google Scholar 

  3. T. Herman, J. Day, J. Beamish, Phys. Rev. B 73, 094127 (2006)

    Article  Google Scholar 

  4. J. Fricke, Aerogels (Springer, Berlin, 1986)

    Book  Google Scholar 

  5. G.W. Liu, B. Zhou, X.Y. Ni, J. Shen, G.M. Wu, A. Du, G.Q. Zu, J. Sol–Gel Sci Tech. 62, 126–133 (2012)

    Article  CAS  Google Scholar 

  6. R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)

    Article  CAS  Google Scholar 

  7. A.A. Anappara, S. Rajeshkumar, P. Mukundan, P.R.S. Warrier, S. Ghosh, K.G.K. Warrier, Acta Mater. 52, 369 (2004)

    Article  CAS  Google Scholar 

  8. L. Kocon, F. Despetis, J. Phalippou, J. Non-Cryst.Solids 225, 96 (1998)

    Article  CAS  Google Scholar 

  9. T. Sumiyoshi, I. Adachi, R. Enomotoi, T. Iijima, R. Suda, M. Yokoyama, H. Yokogawa, J. Non-Cryst.Solids 225, 369 (1998)

    Article  CAS  Google Scholar 

  10. T. Sumiyoshi, I. Adachi, R. Enomoto, T. Iijima, R. Suda, M. Yokoyama, H. Yokogawa, J. Non-Cryst.Solids 225, 369 (1998)

    Article  CAS  Google Scholar 

  11. M. Schmidt, F. Schwertfeger, J. Non-Cryst.Solids 225, 364 (1998)

    Article  CAS  Google Scholar 

  12. J.E. Fesmire, Cryogenics 46, 111 (2006)

    Article  CAS  Google Scholar 

  13. T.J. Yim, S.Y. Kim, K.P. Yoo, Korean J. Chem. Eng. 19, 159 (2002)

    Article  CAS  Google Scholar 

  14. T.M. tillotson, L.W. Hrubesh, J. Non-Cryst. Solids 186, 209 (1995)

    Article  Google Scholar 

  15. C. Xu, B. Zhou, G. Wu, X. Xu, D. Xie, Z. Xu, X. Wang, Y. Wu, J. Shen, High Power Laser and Particle Beams 17, 1674 (2005)

    CAS  Google Scholar 

  16. T.M. tillotson, L.W. Hrubesh, J. Non-Cryst. Solids 145, 44 (1992)

    Article  CAS  Google Scholar 

  17. A.H. Boonstra, T.N.M. Bernards, J. Non-Cryst.Solids 105, 207 (1988)

    Article  CAS  Google Scholar 

  18. L. Kocon, F. Despetis, J. Phalippou, J. Non-Cryst.Solids 225, 96 (1998)

    Article  CAS  Google Scholar 

  19. M.A.B. Meador, L.A. Capadona, L. McCorkle, D.S. Papadopoulos, N. Leventis, Chem. Mater. 19, 2247 (2007)

    Article  CAS  Google Scholar 

  20. M.A.B. Meador, A.S. Weber, A. Hindi, M. Naumenko, L. McCorkle, D. Quade, S.L. Vivod, G.L. Gould, S. White, K. Deshpande, Appl. Mater. Inter 1, 894 (2009)

    Article  CAS  Google Scholar 

  21. A.V. Rao, G.M. Pajonk, N.N. Parvathy, J. Mat. Sci. 29, 1807 (1994)

    Article  CAS  Google Scholar 

  22. A.V. Rao, G.M. Pajonk, J. Non-Cryst.Solids 285, 202 (2001)

    Article  Google Scholar 

  23. N. Leventis, C.S. Leventis, G.H. Zhang, A.M. Rawashdeh, Nano Lett. 2, 957 (2002)

    Article  CAS  Google Scholar 

  24. G.M. Pajonk, J. Non-Cryst.Solids 225, 307 (1998)

    Article  CAS  Google Scholar 

  25. G. Reichenauer, G.W. Scherer, J. Colloid Interf Sci. 236, 385 (2001)

    Article  CAS  Google Scholar 

  26. D.J. Suh, T.J. Park, J.H. Sonn, J.C. Lim, J. Mater. Sci. Lett. 18, 1473 (1999)

    Article  CAS  Google Scholar 

  27. P.B. Sarawade, J.K. Kim, A. Hilonga, H.T. Kim, Korean J. Chem. Eng. 27(4), 1301 (2010)

    Article  CAS  Google Scholar 

  28. G.T. Burns, Q. Deng, R. Field, J.M. Hahn, C.W. Lengtz, J Chem. Mater. 11, 1275 (1999)

    Article  CAS  Google Scholar 

  29. A.C. Pierre, E. Elaloui, G.M. Pajonk, J. Langmuir. 14, 66 (1998)

    Article  CAS  Google Scholar 

  30. W.C. Li, A.H. Lu, S.C. Guo, J. Colloid Interface Sci. 254, 153 (2002)

    Article  CAS  Google Scholar 

  31. K.S.W. Sing, D.H. Everett, R.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, J Pure Appl Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  32. J. Wang, J. Kuhn, X. Lu, J. Non-Cryst.Solids 186, 296 (1995)

    Article  CAS  Google Scholar 

  33. P. Wang, W. Korner, A. Emmerling, A. Beck, J. Kuhn, J. Fricke, J. Non-Cryst.Solids 145, 141 (1992)

    Article  CAS  Google Scholar 

  34. A. Emmerling, R. Petricevic, A. Beck, P. Wang, H. Scheller, J. Fricke, J. Non-Cryst.Solids 185, 240 (1995)

    Article  CAS  Google Scholar 

  35. K. Kamiuto, S. Saitoh, Y. Tokita, J. Quant. Spectrosc. Radiant. Transfer 50, 293 (1993)

    Article  CAS  Google Scholar 

  36. A.M. Yu, Z. Li, D. Zhang, J High Energy Phys. Nucl. 30, 1119 (2006)

    CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by National Natural Science Foundation of China (Grant Nos. 51272179, 51072137,50802064, 51102183), the National Science Foundation for Postdoctoral Scientists of China (Grant No. 20100480619), Shang hai Committee of Science and Technology (10JC1414800) and Key Projects in the National Science & Technology Pillar Program (2009BAC62B02), Specialized Research Fund for the Doctoral Program of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhou, B., Du, A. et al. Effect of the thermal treatment on microstructure and physical properties of low-density and high transparency silica aerogels via acetonitrile supercritical drying. J Porous Mater 20, 1163–1170 (2013). https://doi.org/10.1007/s10934-013-9699-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9699-x

Keywords

Navigation