Skip to main content
Log in

Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In order to compare the various precursors of silica aerogels, three different precursors namely TMOS, TEOS and Na2SiO3 were studied in this paper. The property differences of the aerogels caused by the three precursors were discussed in terms of reaction process, gelation time, pore size distributions, thermal conductivity, SEM, hydrophobicity and thermal stability. It has been found that the gelation time of the silica gel is strongly dependent on the type of precursor used. During the surface modification process, organic groups were attached to the wet gel skeletons transforming the hydrophilic to the hydrophobic which were characterized by Fourier Transform Infrared spectroscopy (FTIR). It has been found that the contact angle of the Na2SiO3 and TMOS precursor based aerogels with water have the higher contact angle of 149° and whereas Na2SiO3 precursor based aerogel has the lower contact angle of 130°. The thermal conductivities of the Na2SiO3 and TMOS based aerogels have been found to be lower (0.025 and 0.030 W m−1 K−1, respectively) compared to the TEOS based (0.050 W m−1 K−1) aerogels. The pore sizes obtained from the N2 adsorption measurements varied from 40 to 180, 70 to 190, and 90 to 200 nm for the TEOS, TMOS and Na2SiO3 precursor based aerogels, respectively. The scanning electron microscopy studies of the aerogels indicated that the Na2SiO3 and TMOS based aerogels show narrow and uniform pores while the particles of SiO2 network are very small. On the other hand, TEOS aerogel show non-uniform pores such that the numbers of smaller size pores are less compared to the pores of larger size while the SiO2 particles of the network are larger as compared to both Na2SiO3 and TMOS aerogels. Hence, the surface are of the aerogels prepared using TEOS precursor has been found to be the lowest (~620 m2 g−1) compared to the Na2SiO3 (~868 m2 g−1) and TMOS (~764 m2 g−1) aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.A.M. Mulder et al., in Aerogels, ed. by J. Fricke (Springer, Berlin, 1986), p. 68

    Chapter  Google Scholar 

  2. T. Burger, J. Fricke, Aerogels: production, modification and applications. Ber. Bunsenges. 102, 1523–1528 (1998)

    Article  CAS  Google Scholar 

  3. J. Gross, J. Fricke, Ultrasonic velocity measurements in silica, carbon and organic aerogels. J. Non Cryst. Solids 145, 217–222 (1992)

    Article  CAS  Google Scholar 

  4. E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Energy Rev. 34, 273–299 (2014)

    Article  CAS  Google Scholar 

  5. M.M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview. J. Sol-Gel. Sci. Technol. 63, 315–339 (2012)

    Article  CAS  Google Scholar 

  6. J.G. Reynolds, P.R. Coronado, L.W. Hrubesh, Hydrophobic aerogels for oil-spill cleanup—synthesis and characterization. J. Non Cryst. Solids 292(1–3), 127–137 (2001)

    Article  CAS  Google Scholar 

  7. I. Smirnova, S. Suttiruengwong, W. Arlt, Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non Cryst. Solids 350(2004), 54–60 (2004)

    Article  CAS  Google Scholar 

  8. G.M. Pajonk, S.J. Teichner, J. Fricke (eds.), Aerogels (Springer, NewYork, 1986), pp. 193–199

    Google Scholar 

  9. G.M. Pajonk, Aerogel catalysts. Appl. Catal. 72, 217–266 (1991)

    Article  CAS  Google Scholar 

  10. J. Fricke, A. Emmerling, Aerogels—recent progress in production techniques and novel applications. J. Sol-Gel. Sci. Technol. 13(1–3), 299–303 (1999)

    Google Scholar 

  11. U.K.H. Bangi, A.V. Rao, A.P. Rao, A new route for preparation of sodium silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci. Technol. Adv. Mater. 9, 035006 (2008)

    Article  Google Scholar 

  12. L.-J. Wang, S.-Y. Zhao, M. Yang, Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater. Chem. Phys. 113, 485–490 (2009)

    Article  CAS  Google Scholar 

  13. Hajar Maleki, Luisa Duraes, Antonio Portugal, Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. J. Phys. Chem. C 119, 7689–7703 (2015)

    Article  CAS  Google Scholar 

  14. D.B. Mahadik, A.V. Rao, P.B. Wagh, S.C. Gupta, Synthesis of transparent and hydrophobic TMOS based silica aerogels. AIP Conf. Proc. 1536, 553 (2013)

    Article  CAS  Google Scholar 

  15. Wim J. Malfait, Shanyu Zhao, Rene Verel, Subramaniam Iswar, Daniel Rentsch, Resul Fener, Yucheng Zhang, Barbara Milow, Matthias M. Koebel, Surface chemistry of hydrophobic silica aerogels. Chem. Mater. 27(19), 6737–6745 (2015)

    Article  CAS  Google Scholar 

  16. S. Hea, Z. Lia, X. Shia, H. Yanga, L. Gonga, X. Cheng, Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area. Adv. Powder Technol. 26(2), 537–541 (2015)

    Article  Google Scholar 

  17. P.B. Wagh, R. Begag, G.M. Pajonk, A.V. Rao, D. Haranath, Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater. Chem. Phys. 57, 214–218 (1999)

    Article  CAS  Google Scholar 

  18. D.B. Mahadik, A.V. Rao, The ambient pressure dried TEOS based silica aerogel granules. J. Porous Mater. 19(1), 87–94 (2012)

    Article  CAS  Google Scholar 

  19. P.B. Sarawade, J.-K. Kim, A. Hilonga, D.V. Quang, H.T. Kim, Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate. Microporous Mesoporous Mater. 139, 138–147 (2011)

    Article  CAS  Google Scholar 

  20. G.W. Scherer, R.M. Swiatek, Measurement of permeability: II. Silica gel. J. Non Cryst. Solids 113(2–3), 119–129 (1990)

    Google Scholar 

  21. E. Nilsen, M.-A. Einarsrud, G.W. Scherer, J. Non Cryst. Solids 221, 135 (1997)

    Article  CAS  Google Scholar 

  22. D.M. Smith, G.W. Scherer, J.M. Anderson, J. Non Cryst Solids 188, 191 (1995)

    Article  CAS  Google Scholar 

  23. A.E. Scheidegger, The Physics of Flow Through Porous Media, 3rd edn. (University of Torento Press, Torento, 1974)

    Google Scholar 

  24. P.M. Adler, Transport processes in fractals. VI. Stokes flow through Sierpinski carpets. Phys. Fluids 29, 15 (1986)

    Article  CAS  Google Scholar 

  25. F. Rojas, I. Kornhauser, C. Felipe, J.M. Esparza, S. Cordero, A. Dom-ínguez, J.L. Riccardo, PCCP Phys. Chem. Chem. Phys. 22, 2346–2355 (2002)

    Article  Google Scholar 

  26. S.A. Lermontov, A.N. Malkova, L.L. Yurkova, E.A. Straumal, N.N. Gubanova, A.Y. Baranchikov, V.K. Ivanov, Mater. Lett. 116, 116–119 (2014)

    Article  CAS  Google Scholar 

  27. D.B. Mahadik, Y.K. Lee, N.K. Chavan, S.A. Mahadik, H.-H. Park, Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process. J. Supercrit. Fluids 107, 84–91 (2016)

    Article  CAS  Google Scholar 

  28. U. Schubert, N. Hüsing, Synthesis of inorganic materials (Wiley-VCH, Weinheim, 2005), pp. 92–221

    Google Scholar 

Download references

Acknowledgments

The corresponding author is highly thankful to the UGC, New Delhi, India, for the funding this work under University Grant Commission-Basic Science Research (UGC-BSR) Faculty Fellowship No. F.18-1/2011 (BSR). One of the authors, Abhijit A. Pisal is highly grateful to the UGC, New Delhi, for the Stipendiary Candidateship under UGC-BSR-Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkateswara Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisal, A.A., Rao, A.V. Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J Porous Mater 23, 1547–1556 (2016). https://doi.org/10.1007/s10934-016-0215-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0215-y

Keywords

Navigation