Skip to main content
Log in

Geometrical and electronic structure of small copper nanoclusters: XANES and DFT analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometrical and electronic structure of small copper nanoclusters was studied by density functional theory (DFT) and analysis of X-ray absorption spectra. It was shown that the icosahedral geometry of small copper nanoclusters of 13 atoms was energetically more stable than cuboctahedral geometry. The binding energies in these structures were compared; the theoretical XANES spectra were compared with experiment. The paper gives the results of ab initio calculations of the electronic structure of copper clusters differing in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Joo, S. J. Choi, I. Oh, et al., Nature, 412, 169 (2001).

    Article  CAS  Google Scholar 

  2. M. Valden, X. Lai, and D. W. Goodman, Science, 281, 1647 (1998).

    Article  CAS  Google Scholar 

  3. P. L. Hansen, J. B. Wagner, S. Helveg, et al., ibid., 295, 2053 (2002).

    Article  CAS  Google Scholar 

  4. M. B. Knickelbein, Ann. Rev. Phys. Chem., 50, 79 (1999).

    Article  CAS  Google Scholar 

  5. D. I. Gittins, D. Bethell, D. J. Schiffrin, et al., Nature, 408, 67 (2000).

    Article  CAS  Google Scholar 

  6. S. J. Park, T. A. Taton, and C. A. Mirkin, Science, 295, 1503 (2002).

    Article  CAS  Google Scholar 

  7. K. Boal, F. Ilhan, J. E. DeRouchey, et al., Nature, 404, 746 (2000).

    Article  CAS  Google Scholar 

  8. C. Binns, Surf. Sci. Rep., 44, 1 (2001).

    Article  CAS  Google Scholar 

  9. S. J. Carroll, P. D. Nellist, R. E. Palmer, et al., Phys. Rev. Lett., 84, 2654 (2000).

    Article  CAS  Google Scholar 

  10. B. von Issendorf and R. E. Palmer, Rev. Sci. Instrum., 70, 4497 (1999).

    Article  Google Scholar 

  11. B. Pauwels, G. van Tendeloo, W. Bouwen, et al., Phys. Rev. B, 62, 10383 (2000).

  12. C. L. Cleveland, U. Landman, T. G. Schaaff, et al., Phys. Rev. Lett., 79, 1873 (1997).

    Article  CAS  Google Scholar 

  13. J. M. Soler, M. R. Beltran, K. Michaelian, et al., Phys. Rev. B, 61, 5771 (2000).

    Article  CAS  Google Scholar 

  14. R. Fournier, J. Chem. Phys., 115, 2165 (2001).

    Article  CAS  Google Scholar 

  15. H. Hakkinen and U. Landman, Phys. Rev. B, 62, 2287 (2000).

    Article  Google Scholar 

  16. D. H. Haberlen, S. C. Chung, M. Stener, et al., J. Chem. Phys., 106, 5189 (1997).

    Article  Google Scholar 

  17. S. Gilb, P. Weis, F. Furche, et al., ibid., 116, 4094 (2002).

    Article  CAS  Google Scholar 

  18. H. Hakkinen, M. Moseler, and U. Landman, Phys. Rev. Lett., 89, 033401 (2002).

    Google Scholar 

  19. J. P. K. Doye and D. J. Wales, J. Chem. Soc., Faraday Trans., 93, 4233 (1997).

    Article  CAS  Google Scholar 

  20. J. P. K. Doye and D. J. Wales, New J. Chem., 22, 733 (1998).

    Article  CAS  Google Scholar 

  21. N. T. Wilson and R. L. Johnston, J. Eur. Phys. D, 12, 161 (2000).

    Article  CAS  Google Scholar 

  22. S. Darby, T. V. Mortimer-Jones, R. L. Johnston, et al., J. Chem. Phys., 116, 1536 (2002).

    Article  CAS  Google Scholar 

  23. K. Michaelian, N. Rendon, and I. L. Garzon, Phys. Rev. B, 60, 2000 (1999).

    Article  CAS  Google Scholar 

  24. I. L. Garzon, K. Michaelian, M. R. Beltran, et al., Phys. Rev. Lett., 81, 1600 (1998).

    Article  CAS  Google Scholar 

  25. V. Bonacic-Koutecky, J. Burda, R. Mitric, et al., J. Chem. Phys., 117, 3120 (2002).

    Article  CAS  Google Scholar 

  26. J. Wang, G. Wang, and J. Zhao, Phys. Rev. B, 66, 035418 (2002).

  27. E. K. Parks, K. P. Kerns, and S. J. Riley, J. Chem. Phys., 114, 2228 (2001).

    Article  CAS  Google Scholar 

  28. D. Reinhard, B. D. Hall, P. Berthoud, et al., Phys. Rev. Lett., 79, 1459 (1997).

    Article  CAS  Google Scholar 

  29. S. H. Yang, D. A. Drabold, J. B. Adams, et al., J. Phys.: Condens. Matter, 9, L39 (1997).

    Article  CAS  Google Scholar 

  30. K. Michaelian, M. R. Beltran, and I. L. Garzon, Phys. Rev. B, 65, 041403 (2002).

    Google Scholar 

  31. E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys., 2, 41 (1973).

    Article  CAS  Google Scholar 

  32. P. M. Boerrigter, G. te Velde, and E. J. Baerends, Int. J. Quant. Chem., 33, 87 (1988).

    Article  CAS  Google Scholar 

  33. G. te Velde and E. J. Baerends, Phys. Rev. B, 44, 7888 (1991).

    Article  Google Scholar 

  34. C. Fonseca Guerra, O. Visser, J. G. Snijders, et al., Meth. Tech. Comput. Chem., 305 (1995).

  35. J. W. Andzelm, D. T. Nguyen, R. Eggenberger, et al., Comput. Chem., 19, 145 (1995).

    Article  CAS  Google Scholar 

  36. C. Fonseca Guerra, J. G. Snijders, G. te Velde, et al., Theor. Chem. Acc., 99, 391 (1998).

    Article  Google Scholar 

  37. W. Kohn and L. Sham, Phys. Rev., 140, A1133 (1965).

  38. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 45, 566 (1980).

    Article  CAS  Google Scholar 

  39. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, 1200 (1980).

    Article  CAS  Google Scholar 

  40. M. Swart, A. W. Ehlers, and K. Lammertsma, Mol. Phys., 102, 2467 (2004).

    Article  CAS  Google Scholar 

  41. N. C. Handy and A. J. Cohen, ibid., 99, 403 (2001).

    Article  CAS  Google Scholar 

  42. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  43. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys., 98, 5612 (1993).

    Article  CAS  Google Scholar 

  44. R. Hoffmann, Chem. Int. Ed., 21, 711 (1982).

    Google Scholar 

  45. T. Ziegler and A. Rauk, Inorg. Chem., 18, 1558 (1979).

    Article  CAS  Google Scholar 

  46. T. Ziegler and A. Rauk, ibid., 18, 1755.

  47. F. M. Bickelhaupt and E. J. Baerends, Rev. Comput. Chem., 15, 1 (2000).

    Article  CAS  Google Scholar 

  48. K. Morokuma, J. Chem. Phys., 55, 1236–1244 (1971).

    Article  CAS  Google Scholar 

  49. K. Kitaura and K. Morokuma, Int. J. Quant. Chem., 10, 325 (1976).

    Article  CAS  Google Scholar 

  50. T. Ziegler and A. Rauk, Theor. Chim. Acta, 46, 1 (1977).

    CAS  Google Scholar 

  51. L. Versluis and T. J. Ziegler, J. Chem. Phys., 88, 322 (1988).

    Article  CAS  Google Scholar 

  52. L. Versluis, Ph. D. Thesis, University of Calgary (1989).

  53. L. Fan and T. J. Ziegler, Chem. Phys., 95, 7401 (1991).

    Article  CAS  Google Scholar 

  54. L. Fan and T. J. Ziegler, ibid., 96, 9005 (1992).

    CAS  Google Scholar 

  55. L. Fan, L. Versluis, T. Ziegler, et al., Int. J. Quant. Chem. Symp., S22, 173 (1998).

    Google Scholar 

  56. C. G. Broyden, J. Inst. Math. Appl., 6, 76 (1970).

    Article  Google Scholar 

  57. Y. Joly, Phys. Rev. B, 63, 125120 (2001).

    Google Scholar 

  58. M. Riedler, A. R. B. de Castro, A. Kolmakov, et al., ibid., 64, 245419 (2001).

  59. F. Cleri and V. Rosato, ibid., 48, 22 (1993).

    Article  CAS  Google Scholar 

  60. K. Tamura, H. Oyanagi, T. Kondo, et al., J. Phys. Chem. B, 104, 9017 (2000).

    Article  CAS  Google Scholar 

  61. P. Jaque and A. Toro-Labbe, J. Chem. Phys., 117, 3208 (2002).

    Article  CAS  Google Scholar 

  62. U. Lammers and G. Borstel, Phys. Rev. B, 49, 17360 (1994).

  63. J. Demuynck, M.-M. Rohmer, A. Strich, et al., J. Chem. Phys., 75, 3443 (1981).

    Article  CAS  Google Scholar 

  64. G. Seifert, Phys. Status Solidi B, 143, K37 (1987).

    Article  CAS  Google Scholar 

  65. S. Valkealahty and M. Manninen, Phys. Rev. B, 45, 9459 (1992).

    Article  Google Scholar 

  66. O. B. Christensen and K. W. Jacobsen, J. Phys.: Condens. Matter, 5, 5591 (1993).

    Article  CAS  Google Scholar 

  67. C. Ozdogan and S. Erkoc, Z. Phys. D, 41, 205 (1997).

    Article  CAS  Google Scholar 

  68. J. Oviedo and R. E. Palmer, J. Chem. Phys., 117, 9548 (2002).

    Article  CAS  Google Scholar 

  69. M. Grioni, J. B. Goedkoop, R. Schoorl, et al., Phys. Rev. B, 39, 1541 (1989).

    Article  CAS  Google Scholar 

  70. R. L. Johnston, Atomic and Molecular Clusters, Taylor and Francis, London (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Mazalova.

Additional information

Original Russian Text Copyright © 2008 by V. L. Mazalova and A. V. Soldatov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 49, Supplement, pp. S110–S117, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazalova, V.L., Soldatov, A.V. Geometrical and electronic structure of small copper nanoclusters: XANES and DFT analysis. J Struct Chem 49 (Suppl 1), 107–115 (2008). https://doi.org/10.1007/s10947-008-0208-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-008-0208-z

Keywords

Navigation