Skip to main content
Log in

Ab initio Insight of the Electronic, Structural, Mechanical and Optical Properties of X\(_3\)P\(_2\) (X= Mg, Ca) from GGA and Hybrid Functional (HSE06)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, the structural, mechanical and optoelectronic properties of X\(_3\)P\(_2\) (X= Mg, Ca) have been investigated by using the first-principles calculation. The obtained results from the structural and mechanical properties reveal that our X\(_3\)P\(_2\) compounds are thermodynamically and mechanically stable. Moreover, the elastic constants and bulk modulus result imply that Mg\(_3\)P\(_2\) is ductile and Ca\(_3\)P\(_2\) is brittle. The calculated band structure reveals that our two compounds have a direct bandgap (\(\Gamma\)-\(\Gamma\)) of 0.523 eV and 0.446 eV for Mg\(_3\)P\(_2\) and Ca\(_3\)P\(_2\), respectively, from GGA. However, on using HSE06 hybrid functional the bandgap has been enhanced to 1.282 eV for Mg\(_3\)P\(_2\) and 1.092 eV for Ca\(_3\)P\(_2\). Both compounds exhibit a high optical absorption in the visible region (\(\ge\)10\(^5\)cm\(^{-1}\)), making them potential candidate for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ullah, M., Murtaza, G., Ramay, S.M., Mahmood, A.: Mater. Res. Bull. 91, 22–30 (2017)

    Article  Google Scholar 

  2. Liu, B., Hao, J., Tang, X., Li, Y.: J. Alloy. Compd. 720, 207–211 (2017)

    Article  Google Scholar 

  3. Imai, Y., Watanabe, A.: J. Mater. Sci. 41, 2435–2441 (2006). https://doi.org/10.1007/s10853-006-5181-3

    Article  ADS  Google Scholar 

  4. Ji, D., Chong, X., Feng, J.: J. Alloy. Compd. 800, 8–15 (2019)

    Article  Google Scholar 

  5. Reckeweg, O., DiSalvo, F.J., Anorg, Z.: Allg. Chem. 627, 371–377 (2001)

    Article  Google Scholar 

  6. Xie, L.S., Schoop, L.M., Seibel, E.M., Gibson, Q.D., Xie, W., Cava, R.J.: APL Mater. 3, 083602 (2015). https://doi.org/10.1063/1.4926545

  7. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k. Technische Universitt Wien, Austria, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (2001)

    Google Scholar 

  8. Singh, D.J., Nordstrm, L.: Planewaves, Pseudopotentials, and the LAPW Method, 2nd edn. Springer, New York (2006)

    Google Scholar 

  9. Madsen, G.K.H., Blaha, P., Schwarz, K., Sjstedt, E., Nordstrm, L.: Phys. Rev. B 64, 195134 (2001)

  10. Sjostedt, E., Nordstrom, L., Singh, D.J.: Solid State Commun. 114, 15 (2000)

    Article  ADS  Google Scholar 

  11. Gamage, C.S.P., Noto, K.U., Marynick, D.S.: J. Phys. Chem. A 113, 9737–9740 (2009)

    Article  Google Scholar 

  12. Moran, S.: EPPO Bull. 18, 489 (1988)

    Article  Google Scholar 

  13. Faber, H., Dana, M.: The history and development of military pryrotechnics. -v. 2. The manufacture of military pyrotechnics. -v. 3. A study of the chemicals used in the manufacture of military pyrotechnics, in Military Pyrotechnics (U.S. Government Printing Office) (1919)

  14. Ripley, R.: J. Less-Common Met. 4, 496 (1962)

    Article  Google Scholar 

  15. Song, L., Zhang, S., Wu, X., Zhang, S., Wei, Q.: Mat. Lett. 92, 1–3 (2013). https://doi.org/10.1016/j.matlet.2012.10.046

    Article  Google Scholar 

  16. Shin, J.H., Park, J.H.: ISIJ Int. 53, 2266–2268 (2013)

    Article  Google Scholar 

  17. Mokhtari, A.: J. Phys. Condens. Matter 20, 135224 (7pp) (2008). https://doi.org/10.1088/0953-8984/20/13/135224

  18. Liu, B., Hao, J., Tang, X., Li, Y.: J. Alloys Compd. 720, 207–211 (2017). https://doi.org/10.1016/j.jallcom.2017.05.265

    Article  Google Scholar 

  19. Ullah, M., Murtaza, G., Laref, A.: Mater. Res. Exp. 6, 095902 (2019)

  20. Ullah, M., Khan, S., Laref, A., Murtaza, G.: Philosophical Magazine 100(6), 768 (2020)

    Article  ADS  Google Scholar 

  21. Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P. A., Vej-Hansen, U.G., Lee, M.E., Chill, S.T., Rasmussen, F., Penazzi, G., Corsetti, F., Ojanper, A., Jensen, K., Palsgaard, M.L.N., Martinez, U., Blom, A., Brandbyge, M., Stokbro, K.: "QuantumATK: an integrated platform of electronic and atomic-scale modelling tools”. J. Phys. Condens. Matter 32, 015901 (2020)

  22. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization Math. Program. 45, 503-528 (1989)

  23. Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  24. Perdew, J.P., Burke, K. Ernzerhof, M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996)

  25. Heyd, J., Scuseria, G.E., Ernzerhof, M.: J. Chem. Phys. 118, 8207–8215 (2003)

    Article  ADS  Google Scholar 

  26. Heyd, J., Scuseria, G.E., Ernzerhof, M.: J. Chem. Phys. 124, 219906 (2006)

  27. Perdew, J.P., Ernzerhof, M., Burke, K.: J. Chem. Phys. 105(22), 9982–9985 (1996). https://doi.org/10.1063/1.472933

    Article  ADS  Google Scholar 

  28. Martyna, G.J., Tobias, D.J., Klein, M.L.: Constant pressure molecular dynamics algorithems. J. Chem. Phys. 101, 4177 (1994)

  29. K. Bougherara, F. Litimein, R. Khenata, E. Ugun, H.Y. Ocak, S. Ugur, Gur, G.U., Reshak, A.H., Soyalp, F., Bin-Omran, S.: Sci. Adv. Mater. 5, 97-106 (2013)

  30. Hill, R.: Proc Phys Soc London. Sect A 65(5), 349 (1952)

    Google Scholar 

  31. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1954)

    MATH  Google Scholar 

  32. Bougherara, K., Rai, D.P., Reshak, A.H.: Chin. J. Phys. 59, 265–272 (2019)

    Article  Google Scholar 

  33. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin, Philosophical Magazine and Journal of Science 45, 823-843 (1954)

Download references

Acknowledgements

The computations were performed on the Cloud Computing System provided by CDTA and the Al-Farabi Cluster computer of the Ecole Nationale Polytechnique Oran-MAURICE AUDIN. A. Laref acknowledges the Research Center of Female Scientific and Medical College, King Saud University, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Rai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougherara, K., Al-Qaisi, S., Laref, A. et al. Ab initio Insight of the Electronic, Structural, Mechanical and Optical Properties of X\(_3\)P\(_2\) (X= Mg, Ca) from GGA and Hybrid Functional (HSE06). J Supercond Nov Magn 35, 79–86 (2022). https://doi.org/10.1007/s10948-021-06009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06009-3

Keywords

Navigation