Skip to main content
Log in

Investigation of Structural, Electronics, Optical, Mechanical and Thermodynamic Properties of YRu2P2 Compound for Superconducting Application

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural, electronic, optical, and thermodynamic properties of the YRu2P2 superconductor are investigated theoretically using the CASTEP (Cambridge Serial Total Energy Package) code, which utilizes an ultra-soft pseudopotential USP plane wave and a Perdew Burke Ernzerhof (PBE) exchange–correlation functional of the Generalized Gradient Approximation (GGA). The evaluated value of the lattice parameters is found to be 4.84 Å. The band structure of the compound indicates that this compound does not possess the band gap. The absence of the band gap suggests that the compound has a metallic nature. The density of states (partial and total) verifies the findings obtained from band structure. The existence of strong ionic contact between Ru–Ru atoms is shown by the negative value of the Mulliken population. The research has also been done on the optical properties of the material to find out how it responds optically. The results of the elastic constant calculation show that the material is mechanically stable and brittle in its natural state. The positive value of AU indicates that the compound is anisotropic. It is also revealed from the AG and AB values that the compound has anisotropic characteristics. Vickers hardness value obtained for the compound demonstrates that it is relatively hard in nature. Along with the initial elastic modulus calculation, the bulk, shear, and Young’s modulus are also determined. The existence of covalent character in the compound is shown by the Poisson’s ratio. The thermal conductivity, melting point, and Dulong-Petit limit of the material have all been determined to perform a more in-depth analysis of the material. The overlapping of the Fermi bands shows that the material is a superconductor, and the material’s metallic nature suggests that it will be an excellent reflector of incoming light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ganesanpotti, S., Yajima, T., Nakano, K., Nozaki, Y., Yamamoto, T., Tassel, C., Kageyama, H.: Superconductivity in LaPd2As2 with a collapsed 122 structure. J. Alloy. Compd. 613, 370–374 (2014)

    Article  Google Scholar 

  2. Buschow, K.H.J.: Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40(10), 1179 (1977)

    Article  ADS  Google Scholar 

  3. Banu, I.S., Rajagopalan, M., Yousuf, M., Shenbagaraman, P.: Electronic and bonding properties of ANi2P2 (A= Ca, Sr, Ba). J. Alloy. Compd. 288(1–2), 88–95 (1999)

    Article  Google Scholar 

  4. Söderlind, P., Turchi, P. E. A., Landa, A., & Lordi, V.: Ground-state properties of rare-earth metals: an evaluation of density-functional theory. J. Phys. Condensed Matter 26(41), 416001 (2014) 

  5. Anand, V. K., Kim, H., Tanatar, M. A., Prozorov, R., & Johnston, D. C.: Superconducting and normal-state properties of A Pd 2 As 2 (A= Ca, Sr, Ba) single crystals. Phys. Rev. B. 87(22), 224510 (2013)

  6. Rotter, M., Tegel, M., & Johrendt, D.: Superconductivity at 38 K in the iron arsenide (Ba 1− x K x) Fe 2 As 2. Phys. Rev. Lett. 101(10), 107006 (2008) 

  7. Sasmal, K., Lv, B., Lorenz, B., Guloy, A. M., Chen, F., Xue, Y. Y., & Chu, C. W.: Superconducting Fe-based compounds (A 1− x Sr x) Fe 2 As 2 with A= K and Cs with transition temperatures up to 37 K. Phys. Rev. Lett. 101(10), 107007 (2008)

  8. Meisner, G. P.: Superconductivity and magnetic order in ternary rare earth transition metal phosphides. Physica B+ C 108(1–3), 763–764 (1981)

  9. Jeitschko, W., Glaum, R., & Boonk, L.: Superconducting LaRu2P2 and other alkaline earth and rare earth metal ruthenium and osmium phosphides and arsenides with ThCr2Si2 structure. J. Solid State Chem. 69(1), 93–100 (1987) 

  10. Barz, H., Ku, H. C., Meisner, G. P., Fisk, Z., & Matthias, B. T.: Ternary transition metal phosphides: high-temperature superconductors. Proceedings of the National Academy of Sciences, 77(6), 3132–3134. I. Shirotani, T, Uchiumi, K, Ohno et al., “Superconductivity of filled skutterudites LaRu4As12 and PrRu4As12”, Phys. Rev. B 56 (1997) 7866–7869 (1980) 

  11. Meisner, G.P., Ku, H.C., Barz, H.: Superconducting equiatomic ternary transition metal arsenides. Mater. Res. Bull. 18(1983), 983–991 (1983)

    Article  Google Scholar 

  12. Barz, H., Ku, H.C., Meisner, G.P., Fisk, Z., Matthias, B.T.: Ternary transition metal phosphides: high-temperature superconductors. Proc. Natl. Acad. Sci. 77(6), 3132–3134 (1980)

    Article  ADS  Google Scholar 

  13. Aliev, F.G., Brandt, N.B., Moshchalkov, V.V., Chudinov, S.M.: Superconductivity in CeCu2Si2. Solid State Commun. 45(3), 215–218 (1983)

    Article  ADS  Google Scholar 

  14. Vargoz, E., Jaccard, D., Genoud, J.Y., Brison, J.P., Flouquet, J.: Upper critical field of CeCu2Si2 at very high pressure. Solid State Commun. 106(9), 631–636 (1998)

    Article  ADS  Google Scholar 

  15. Rauchschwalbe, U., Ahlheim, U., Steglich, F., Rainer, D., Franse, J.J.M.: Upper critical magnetic fields of the heavy fermion superconductors CeCu 2 Si 2, UPt 3, and UBe 13: comparison between experiment and theory. Zeitschrift für Physik B Condensed Matter 60(2–4), 379–386 (1985)

    Article  ADS  Google Scholar 

  16. McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)

    Article  ADS  Google Scholar 

  17. Guo, Q., Yu, J., Ruan, B. B., Chen, D. Y., Wang, X. C., Mu, Q. G., ... & Ren, Z. A.: Superconductivity at 3.85 K in BaPd2As2 with the ThCr2Si2-type structure. EPL (Europhys. Lett.), 113(1), 17002 (2016)

  18. Segall, M., Probert, M., Pickard, C., Hasnip, P., Clark, S., Refson, K., Yates, J.R., Payne, M.: First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005)

    Google Scholar 

  19. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total energy calculations – molecular-dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  ADS  Google Scholar 

  20. Marzari, N., Vanderbilt, D., Payne, M.C.: Ensemble density functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys. Rev. Lett. 79, 1337–1340 (1997)

    Article  ADS  Google Scholar 

  21. Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1928)

    Article  ADS  Google Scholar 

  22. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  ADS  Google Scholar 

  23. Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992)

    Article  Google Scholar 

  24. Kresse, G., Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  25. Alfe, D.: Ab initio molecular dynamics, a simple algorithm for charge extrapolation. Comp. Phys. Commun. 118, 31–33 (1999)

    Article  ADS  Google Scholar 

  26. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hoat, D.M., Silva, J.R., Blas, A.M.: First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase. Solid State Commun. 275, 29–34 (2018)

    Article  ADS  Google Scholar 

  28. Gorelsky, S. I., & Lever, A. B. P.: Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J. Organometal. Chem. 635(1–2), 187–196 (2001) 

  29. Segall, M.D., Shah, R., Pickard, C.J., Payne, M.C.: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54(23), 16317–16320 (1996)

    Article  ADS  Google Scholar 

  30. Terki, R., Feraoun, H., Bertrand, G., Aourag, H.: Full potential calculation of structural, elastic and electronic properties of BaZrO3 and SrZrO3. Physica status solidi (b) 242(5), 1054–1062 (2005)

    Article  ADS  Google Scholar 

  31. Piskunov, S., Heifets, E., Eglitis, R.I., Borstel, G.: Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput. Mater. Sci. 29(2), 165–178 (2004)

    Article  Google Scholar 

  32. Hill, R.: The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Sect. A, 65(5), 349 (1952) 

  33. Ranganathan, S. I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Physical Rev. Lett. 101(5), 055504 (2008)

  34. Chen, X.Q., Niu, H., Li, D., Li, Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19(9), 1275–1281 (2011)

    Article  Google Scholar 

  35. Fast, L., Wills, J.M., Johansson, B., Eriksson, O.: Elastic constants of hexagonal transition metals: Theory. Phys. Rev. B 51(24), 17431 (1995)

    Article  ADS  Google Scholar 

  36. Pugh, S. F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophic. Magaz J. Sci. 45(367), 823–843 (1954) 

  37. Cao, Y., Zhu, J., Liu, Y., Nong, Z., Lai, Z.: First-principles studies of the structural, elastic, electronic and thermal properties of Ni3Si. Comput. Mater. Sci. 69, 40–45 (2013)

    Article  Google Scholar 

  38. Pisani, C. (Ed.).: Quantum-mechanical ab-initio calculation of the properties of crystalline materials (Vol. 67). Springer Science & Business Media. (2012)

  39. Hohenberg, P., Kohn, W.J.P.R.: Density functional theory (DFT). Phys. Rev 136, B864 (1964)

    Article  ADS  Google Scholar 

  40. Karaca, E., Karadaǧ, S., Tütüncü, H.M., Srivastava, G.P., Uǧur, Ṣ: First-principles investigation of superconductivity in the body-centred tetragonal. Phil. Mag. 96(19), 2059–2073 (2016)

    Article  ADS  Google Scholar 

  41. Shen, Y., Clarke, D. R., & Fuierer, P. A.: Anisotropic thermal conductivity of the aurivillus phase, bismuth titanate (Bi 4 Ti 3 O 12): A natural nanostructured superlattice. Appl. Phys. Lett. 93(10), 102907 (2008) 

  42. Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163, 67–74 (2003)

    Article  Google Scholar 

  43. Alouani, M., Albers, R.C., Methfessel, M.: Calculated elastic constants and structural properties of Mo and MoSi 2. Phys. Rev. B 43(8), 6500 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Ur Rehman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, J.U., Usman, M., Tahir, M.B. et al. Investigation of Structural, Electronics, Optical, Mechanical and Thermodynamic Properties of YRu2P2 Compound for Superconducting Application. J Supercond Nov Magn 34, 3089–3097 (2021). https://doi.org/10.1007/s10948-021-06049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06049-9

Keywords

Navigation