Skip to main content
Log in

Cyclic Voltammetric Studies of Ferrocene in Nonaqueous Solvents in the Temperature Range from 248.15 to 298.15 K

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present work the oxidation of ferrocene, Fe(C5H5)2, to the ferrocenium cation, Fe(C2H5)2 +, was examined in the solvents acetonitrile (ACN), acetone (ACE), N-methylformamide (NMF), N,N-dimethylformamide (DMF), N,N-dimethylacetanide (DMA), 3-pentanone (PEN), dimethyl sulfoxide (DMSO) and dichloromethane (DCM) over the temperature range from 248.15 to 298.15 K using the technique of cyclic voltammetry. The anodic (E pa) and the cathodic (E pc) peak potentials, as well as the corresponding anodic (i pa) and cathodic (i pc) peak currents, were obtained at different scan rates (0.02, 0.05, 0.08 and 0.10 V ·s–1). The half-wave potentials (E 1/2) of the Fe(C2H5)2 +/Fe(C5H5)2 couple in the investigated solvent media have been evaluated. The diffusion coefficients (D) have been calculated using the Randles-Sevcik equation. The effects of changing the scan rate, the temperature and properties of the solvent medium such as viscosity and donor number on the electrochemical behavior of ferrocene have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cunningham, A.J., Underwood, A.L.: Cyclic voltammetry of the pyridine nucleotides and a series of nicotinamide model compounds. Biochem. 6, 266–271 (1967)

    Google Scholar 

  • Ti Tien, H.: Cyclic voltammetry of bilayer lipid membranes. J. Phys. Chem. 88, 3172–3174 (1984)

  • Allemand, P.M., Koch, A., Wudl, F., Rubin, Y., Diederich, F., Alvarez, M.M., Anz, S.J., Whetten, R.L.: Two different fullerenes have the same cyclic voltammetry. J. Am. Chem. Soc. 113, 1050–1051 (1991)

    Google Scholar 

  • Azab, H.A., Banci, L., Borsari, M., Luchinat, C., Sola, M., Viezzoli, M.S.: Redox chemistry of superoxide dismutase. Cyclic voltammetry of wild-type enzymes and mutants on functionally relevant residues. Inorg. Chem. 31, 4649–4655 (1992)

    Google Scholar 

  • Anicet, N., Anne, A., Moiroux, J., Saveant, J.M.: Electron transfer in organized assemblies of biomolecules. Construction and dynamics of avidin/biotin co-immobilized glucose oxidase/ferrocene monolayer carbon electrodes. J. Am. Chem. Soc. 120, 7115–7116 (1998)

    Google Scholar 

  • Kealy, T.J., Paulson, P.L.: A new type of organo-iron compound. Nature 168, 1039–1040 (1951)

    Google Scholar 

  • Wilkinson, G., Rosenblum, M., Whiting, M.C., Woodward, R.B.: The structure of iron biscyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952)

    Google Scholar 

  • Seibold, E.A., Sutton, L.E.: Structure of ferrocene. J. Chem. Phys. 23, 1967–1967 (1955)

    Google Scholar 

  • Kadish, K.M., Su, C.H.: Relationships between electron-transfer rate constants of bis (ligated) (octaethylporphinato)iron(III) perchlorate and the presence of a spin equilibrium. J. Am. Chem. Soc. 105, 177–180 (1983)

    Google Scholar 

  • Ito, N., Saji, T., Aoyagui, S.: Electrochemical formation of stable ferrocene anion and the formal rate constant of the ferrocene electrode. J. Organomet. Chem. 247, 301–305 (1983)

    Google Scholar 

  • Sharp, M., Petersson, M., Edström, K.: A comparison of the charge transfer kinetics between platinum and ferrocene in solution and in the surface attached state. J. Electroanal. Chem. 109, 271–288 (1980)

    Google Scholar 

  • Montenegro, M.I., Pletcher, D.: The determination of the kinetics of electron transfer using fast sweep cyclic voltammetry at microdisc electrodes. J. Electroanal. Chem. 200 371–374 (1986)

    Google Scholar 

  • Sharp, M.: Determination of the charge-transfer kinetics of ferrocene at platinum and vitreous carbon electrodes by potential-step chronocoulometry. Electrochim. Acta. 28, 301–308 (1983)

    Google Scholar 

  • Armstrong, N.R., Quinn, R.K., Vanderborgh, N.E.: Heterogeneous charge transfer rates of the ferrocene oxidation in sulfolane. J. Electrochem. Soc. 123, 646–649 (1976)

    Google Scholar 

  • Diggle, J.W., Parker, A.J.: Ferrocene-ferricinium couple and its role in the estimation of free energies of transfer of single ions. Electrochim. Acta 18, 975–979 (1973)

    Google Scholar 

  • Gagné, R.R., Koval, C.A., Lisensky, G.C.: Ferrocene as an internal standard for the electrochemical measurements. Inorg. Chem. 19, 2854–2855 (1980)

    Google Scholar 

  • Zara, A.J., Machado, S., Bulhoes, L., Benedetti, A.V., Rabockai, T.: The electrochemistry of ferrocene in non-aqueous solvents. J. Electroanal. Chem. 221, 165–174 (1987)

    Google Scholar 

  • Bond, A.M., Henderson, T.L.E., Mann, D.R., Mann, T.F., Thormann, W., Zoski, C.G.: Fast electron transfer rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum disk ultramicroelectrodes. Anal. Chem. 60, 1878–1882 (1988)

    Google Scholar 

  • Crooks, R.M., Bard, A.J.: Electrochemistry in near-critical and supercritical fluids. The electrochemistry of ferrocene and phenazine in acetonitrile between 25 and 300 °C, J. Electroanal. Chem. 243, 117–131 (1988)

    Google Scholar 

  • Kamau, G.N., Saccucci, T.M., Gounili, G., Nassar, A.E.F., Rusling, J.F.: Films formed by oxidation of ferrocene at platinum electrodes. Anal. Chem. 66, 994–1001 (1994)

    Google Scholar 

  • Moharram, Y.I.: Extraction of electrode kinetics and transport parameters of ferrocene at a platinum electrode from semiintegral electroanalysis. J. Electroanal. Chem. 587, 115–126 (2006)

    Google Scholar 

  • Tsierkezos, N.G., Molinou, I.E.: Thermodynamic properties of water/ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data 43, 989–993 (1998)

    Google Scholar 

  • Tsierkezos, N.G., Molinou, I.E.: Surface tension of the 4-methyl-2-pentanone/ethyl benzoate binary system in the temperature range from 278.15 to 308.15 K. J. Solution Chem. 35, 279–296 (2006)

    Google Scholar 

  • Quirk, P.F., Kratochvil, B.: Determination of ferrocene derivatives by oxidation with copper(II) in acetonitrile. Anal. Chem. 42, 535–536 (1970)

    Google Scholar 

  • Hartl, F., Mahabiersing, T., Le Floch, P., Mathey, F., Ricard, L., Rosa, P., Záli, S.: Electronic properties of 4,4’,5,5’-tetramethyl-2,2’-biphosphinine (tmbp) in the redox series fac-[Mn(Br)(CO)3(tmbp)), [Mn(CO)3(tmbp)]2, and [Mn(CO)3(tmbp)]: crystallographic, spectroelectrochemical, and DFT computational study. Inorg. Chem. 42, 4442–4455 (2003)

    Google Scholar 

  • Hultgren, V.M., Mariotti, A.W.A., Bond, A.M., Wedd, A.G.: Reference potential calibration and voltammetry at macrodisk electrodes of metallocene derivatives in the ionic liquid [bmim][PF6]. Anal. Chem. 74, 3151–3156 (2002)

    Google Scholar 

  • Gosser, D.K.: Cyclic Voltammetry. VCH Publishers, Inc., New York (1993) p. 30

  • Ranchet, D., Tommasino, J.B., Vittori, O., Fabre, P.L.: Solvent effects on the electrochemical behavior of iron(III) Schiff base complex. J. Solution Chem. 27, 979–991 (1998)

    Google Scholar 

  • Bond, A.M., Oldham, K.B., Snook, G.A.: Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement of the uncompensated resistance in cyclic voltammetric studies in high-resistance organic solvents. Anal. Chem. 72, 3492–3496 (2000)

    Google Scholar 

  • Sharp, P.R., Frank, K.G.: Reactions of WCl2L4 (L = phosphine). Tungsten(IV) and tungsten(V) hydride complexes. Inorg. Chem. 24, 1808–1813 (1985)

    Google Scholar 

  • Batterjee, S.M., Marzouk, M.I., Aazab, M.E., El-Hashash, M.A.: The electrochemistry of some ferrocene derivatives: redox potential and substituent effects. Applied Organometallic Chem. 17, 291–297 (2003)

    Google Scholar 

  • Keita, B., Bouaziz, D., Nadjo, L.: Solvent effects on the redox potentials of potassium 12-tungstosilicate and 18-tungstodiphosphate. J. Electrochem. Soc. 135, 87–91 (1988)

    Google Scholar 

  • Marcus, Y.: The effectivity of solvents as electron pair donors. J. Solution Chem. 13, 599–624 (1984)

    Google Scholar 

  • Randles, J.E.B.: Cathode-ray polarograph. Current-voltage curves. Trans. Faraday Soc. 44, 327–338 (1948)

    Google Scholar 

  • Comminges, C., Barhdadi, R., Laurent, M., Troupel, M.: Determination of viscosity, ionic conductivity and diffusion coefficients in some binary systems: ionic liquids/molecular solvents. J. Chem. Eng. Data 51, 680–685 (2006)

    Google Scholar 

  • Hall, D.W., Rusell, C.D.: Substituent effects in the chronopotentiometric oxidation of ferrocene derivatives. Internal solvation of certain substituted ferricenium ions. J. Am. Chem. Soc. 89, 2316–2322 (1967)

    Google Scholar 

  • Bockris, J.O'M., Reddy, A.K.N.: Modern Electrochemistry. Vol.1, Plenum Press, New York (1977)

  • Ruff, I., Friedrich, V.J., Demeter, K., Csillag, K.: Transfer diffusion. Kinetics of electron exchange reaction between ferrocene and ferricinium ion in alcohols. J. Phys. Chem. 75, 3303–3309 (1971)

    Google Scholar 

  • Kadish, K.M., Ding, J.Q., Mallinski, T.: Resistance of nonaqueous solvent systems containing tetraalkylammonium salts. Evaluation of heterogeneous electron transfer rate constants for the ferrocene/ferrocenium couple. Anal. Chem. 56, 1741–1744 (1984).

    Google Scholar 

  • Baur, J.E., Wightman, R.M.: Diffusion coefficients determined with microelectrodes. J. Electroanal. Chem. 305, 73–81 (1991)

    Google Scholar 

  • Chuang, H.-J., Soong, L.-L., Leroi, G.E., Popov, A.I.: NMR studies of preferential solvation of sodium cation in mixtures of N-methylformamide with water and some nonaqueous solvents. J. Solution Chem. 18, 759–770 (1989)

    Google Scholar 

  • Aminabhavi, T.M., Gopalakrishna, B.: Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. J. Chem. Eng. Data 40, 856–861 (1995)

    Google Scholar 

  • Acosta, J., Arce, A., Rodil, E., Soto, A.: Densities, speeds of sound, refractive indices, and the corresponding changes of mixing at 25 °C and atmospheric pressure for systems composed by ethyl acetate, hexane, and acetone. J. Chem. Eng. Data 46, 1176–1180 (2001)

    Google Scholar 

  • Johari, G.P.: Dielectric constants, densities, and viscosities of acetone-1-propanol and acetone-n-hexane mixtures at 25 °C. J. Chem. Eng. Data 13, 541–543 (1968)

    Google Scholar 

  • Zielkiewicz, J.: Excess molar volumes and excess Gibbs energies in N-methylformamide and water, or methanol, or ethanol at the temperature 303.15 K. J. Chem. Eng. Data 43, 650–652 (1998)

    Google Scholar 

  • Johari, G.P., Tewari, P.H.: Dissociation studies in high dielectric solvents. Magnesium sulfate as an unassociated salt in N-Methylformamide. J. Phys. Chem. 69, 3167–3168 (1965)

    Google Scholar 

  • Johnson, I., Kalidoss, M., Srinivasamoorthy, R.: Density, viscosity, and speed of sound in the ternary mixtures of 2-ethoxyethanol/N,N-dimethylformamide/N,N-dimethylacetamide and 2-ethoxyethanol/dimethyl sulfoxide/N,N-dimethylacetamide at 308.15 K. J. Chem. Eng. Data 47, 1388–1390 (2002)

    Google Scholar 

  • Aucejo, A., Gabaldon, C., Lovas, S., Mavzal, P., Sanchotello, M.: Phase equilibria in the binary and ternary systems composed of diethyl ketone, 2-pentanone, and 3-pentanol at 101.3 kPa. J. Chem. Eng. Data 48, 1128–1131 (2003)

    Google Scholar 

  • Katyal, R.C., Singh, S., Rattan, V.K., Kanda, P., Acharya, S.: Viscosities, densities, and ultrasonic velocities of 3-pentanone/ethylbenzene and 3-pentanone/o-xylene at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 48, 1262–1265 (2003)

    Google Scholar 

  • Aminabhavi, T.M., Banerjee, K.: Density, viscosity, refractive index, and speed of sound in binary mixtures of dimethyl carbonate with methanol, chloroform, carbon tetrachloride, cyclohexane, and dichloromethane in the temperature interval (298.15–308.15) K. J. Chem. Eng. Data 43, 1096–1101 (1998)

    Google Scholar 

  • Bardavid, S.M., Pedrosa, G.C., Katz, M., Postigo, M.A., Garcia, P.: Excess molar volumes and excess viscosities for the n-hexane/dichloromethane / tetrahydrofuran ternary system at 25 C. J. Solution Chem. 25, 1125–1135 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsierkezos, N.G. Cyclic Voltammetric Studies of Ferrocene in Nonaqueous Solvents in the Temperature Range from 248.15 to 298.15 K. J Solution Chem 36, 289–302 (2007). https://doi.org/10.1007/s10953-006-9119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9119-9

Keywords

Navigation