Skip to main content
Log in

Electrochemical Responses and Sensitivities of Films Based on Multi-Walled Carbon Nanotubes in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Novel films consisting of multi-walled carbon nanotubes (MWCNTs) were fabricated by means of chemical vapor deposition with decomposition of either acetonitrile (ACN) or benzene (BZ) using ferrocene as catalyst. The electrochemical responses of MWCNT-based films towards the ferrocyanide/ferricyanide, [Fe(CN)6]3−/4− redox couple were probed by means of cyclic voltammetry and electrochemical impedance spectroscopy at 25.0 ± 0.5 °C. Both MWCNT-based films exhibit Nernstian response towards [Fe(CN)6]3−/4− with some slight kinetic differences. Namely, heterogeneous electron transfer rate constants lying in ranges of 2.69 × 10−2–1.7 × 10−3 and 9.0 × 10−3–2.6 × 10−3 cm·s−1 were obtained at v = 0.05 V·s−1 for MWCNTACN and MWCNTBZ, respectively. The detection limit of MWCNTACN, estimated to be about 4.70 × 10−7 mol·L−1 at v = 0.05 V·s−1, tends to become slightly poorer with the increase of the scan rate, namely at v = 0.10 V·s−1 the detection limit of 1.70 × 10−6 mol·L−1 was determined. Slightly poorer response ability was exhibited by MWCNTBZ; specifically the detection limits of 1.57 × 10−6 and 4.35 × 10−6 mol·L−1 were determined at v = 0.05 and v = 0.10 V·s−1, respectively. The sensitivities of MWCNTACN and MWCNTBZ towards [Fe(CN)6]3−/4− were determined as 1.60 × 10−7 and 1.51 × 10−7 A·L·mol−1·cm−2, respectively. The excellent electrochemical performance of MWCNTACN is attributed to the presence of incorporated nitrogen in the nanotube’s structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kavan, L., Dunsch, L.: Electrochemistry of carbon nanotubes. Top. Appl. Phys. 111, 567–603 (2008)

    Article  CAS  Google Scholar 

  2. Ahammad, A.J.S., Lee, J.J., Rahman, M.A.: Electrochemical sensors based on carbon nanotubes. Sensors 9, 2289–2319 (2009)

    Article  CAS  Google Scholar 

  3. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006)

    Article  CAS  Google Scholar 

  4. Sherigara, B.S., Kutner, W., Souza, F.D.: Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15, 753–772 (2003)

    Article  CAS  Google Scholar 

  5. Pan, D., Chen, J., Yao, S., Tao, W., Nie, L.: An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(o-aminophenol) and carbon nanotubes composite film on a gold electrode. Anal. Sci. 21, 367–371 (2005)

    Article  CAS  Google Scholar 

  6. Yun, Y.H., Dong, Z., Shanov, V., Heineman, W.R., Halsall, H.B., Bhattacharya, A., Conforti, L., Narayan, R.K., Ball, W.S., Schulz, M.J.: Nanotube electrodes and biosensors. Nano Today 2, 30–37 (2007)

    Article  Google Scholar 

  7. Li, N., Wang, J., Li, M.: Electrochemistry at carbon nanotube electrodes. Rev. Anal. Chem. 22, 19–33 (2003)

    Article  Google Scholar 

  8. Wang, J.: Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17, 7–14 (2005)

    Article  CAS  Google Scholar 

  9. Zhao, Q., Gan, Z., Zhuang, Q.: Electrochemical sensors based on carbon nanotubes. Electroanalysis 14, 1609–1613 (2002)

    Article  CAS  Google Scholar 

  10. Szroeder, P., Tsierkezos, N.G., Scharff, P., Ritter, U.: Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers. Carbon 48, 4489–4496 (2010)

    Article  CAS  Google Scholar 

  11. Tsierkezos, N.G., Ritter, U.: Synthesis and electrochemistry of multi-walled carbon nanotube films directly attached on silica substrate. J. Solid State Electrochem. 14, 1101–1107 (2010)

    Article  CAS  Google Scholar 

  12. Tsierkezos, N.G., Szroeder, P., Ritter, U.: Multi-walled carbon nanotubes as electrode materials for electrochemical studies of organometallic compounds in organic solvent media. Monatsh. Chem. 142, 233–242 (2011)

    Article  CAS  Google Scholar 

  13. Tsierkezos, N.G., Szroeder, P., Ritter, U.: Application of films consisting of carbon nanoparticles for electrochemical detection of redox systems in organic solvent media. Fuller. Nanotub. Carbon Nanostruct. 19, 505–516 (2011)

    Article  CAS  Google Scholar 

  14. Rao C.N.R., Sen R.: Large aligned-nanotube bundles from ferrocene pyrolysis. Chem. Commun. 1525–1526 (1998)

  15. Tsierkezos, N.G., Ritter, U.: Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. J. Appl. Electrochem. 40, 409–417 (2010)

    Article  CAS  Google Scholar 

  16. Tsierkezos, N.G., Ritter, U., Philippopoulos, A.I., Schröder, D.: Electrochemical studies of the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], with L = 2-(2′-pyridyl)quinoxaline. J. Coord. Chem. 63, 3517–3530 (2010)

    Article  CAS  Google Scholar 

  17. Bond, A.M., Oldham, K.B., Snook, G.A.: Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high-resistance organic solvents. Anal. Chem. 72, 3492–3496 (2000)

    Article  CAS  Google Scholar 

  18. Nicholson, R.S.: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965)

    Article  CAS  Google Scholar 

  19. Pumera, M., Sasaki, T., Iwai, H.: Relationship between carbon nanotube structure and electrochemical behavior: Heterogeneous electron transfer at electrochemically activated carbon nanotubes. Chem. Asian J. 3, 2046–2055 (2008)

    Article  CAS  Google Scholar 

  20. Carter, M.T., Rodriguez, M., Bard, A.J.: Voltammetric studies of the interaction of metal chelates with DNA. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J. Am. Chem. Soc. 111, 8901–8911 (1989)

    Article  CAS  Google Scholar 

  21. Brett, C.M.A., Brett, A.M.O.: Electroanalysis. Oxford University Press, Oxford (1998)

    Google Scholar 

  22. Amemiya, T., Hashimoto, K., Fujishima, A.: Dynamics of Faradaic processes in polypyrrole polystyrenesulfonate composite films in the presence and absence of a redox species in aqueous solutions. J. Phys. Chem. 97, 4192–4195 (1993)

    Article  CAS  Google Scholar 

  23. Perenlei, G., Tee, T.W., Yusof, N.A., Kheng, G.J.: Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 520–531 (2011)

    CAS  Google Scholar 

  24. Pandurangachar, M., Swamy, B.E.K., Chandrashekar, B.N., Gilbert, O., Reddy, S., Sherigara, B.S.: Electrochemical investigations of potassium ferricyanide and dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate modified carbon paste electrode: A cyclic voltammetric study. Int. J. Electrochem. Sci. 5, 1187–1202 (2010)

    CAS  Google Scholar 

  25. Niranjana, E., Swamy, B.E.K., Naik, R.R., Sherigara, B.S., Jayadevappa, H.: Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: A cyclic voltammetric study. J. Electroanal. Chem. 631, 1–9 (2009)

    Article  CAS  Google Scholar 

  26. Hirano, A., Kanai, M., Nara, T., Sugawara, M.: A glass capillary ultramicroelectrode with an electrokinetic sampling ability. Anal. Sci. 17, 37–43 (2001)

    Article  CAS  Google Scholar 

  27. Rodriguez Nieto, J.F., Tucceri, R.I., Posadas, D.: EIS detection of the partial oxidation of polymers derived from aryl amines. J. Electroanal. Chem. 403, 241–244 (1996)

    Article  Google Scholar 

  28. Gileadi, E.: Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists. VCH Publishers, Weinheim (1993)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. D. Schneider (TU Ilmenau) for the help for the production of the MWCNT-based electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsierkezos, N.G., Ritter, U. Electrochemical Responses and Sensitivities of Films Based on Multi-Walled Carbon Nanotubes in Aqueous Solutions. J Solution Chem 41, 2047–2057 (2012). https://doi.org/10.1007/s10953-012-9925-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9925-1

Keywords

Navigation