Skip to main content
Log in

Testing Transition State Theory on Kac-Zwanzig Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A variant of the Kac-Zwanzig model is used to test the prediction of transition state theory (TST) and variational transition state theory (VTST). The model describes the evolution of a distinguished particle moving in a double-well external potential and coupled to N free particles through linear springs. While the Kac-Zwanzig model is deterministic, under appropriate choice of the model parameters the evolution of the distinguished particle can be approximated by a two-state Markov chain whose transition rate constants can be computed exactly in suitable limit. Here, these transition rate constants are compared with the predictions of TST and VTST. It is shown that the application of TST with a naive (albeit natural) choice of dividing surface leads to the wrong prediction of the transition rate constants. This is due to crossings of the dividing surface that do not correspond to actual transition events. However, optimizing over the dividing surface within VTST allows one to eliminate completely these spurious crossings, and therefore derive the correct transition rate constants for the model. The reasons why VTST is successful in this model are discussed, which allows one to speculate on the reliability of VTST in more complicated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ariel and E. Vanden-Eijnden, in preparation.

  2. C. H. Bennett, Molecular dynamics and transition state theory: the simulation of infrequent events. In R. E. Christoffersen (ed.), Algorithms for chemical computations, pp. 63–97 (Amer. Chem. Soc., Washington D.C., 1977).

  3. P. G. Bolhuis, C. Dellago, D. Chandler and P. L. Geissler. Transition path sampling: Throwing ropes over mountain passes, in the dark. Ann. Rev. Phys. Chem. 53:291–318 (2002).

    Article  Google Scholar 

  4. A. Bovier, M. Eckhoff, V. Gayrard and M. Klein, Metastability in reversible diffusion processes—I. Sharp asymptotics for capacities and exit times. J. Euro. Math. Soc. 6:399–424 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Cano and A. M. Stuart, Underresolved simulations of heat baths. J. Comp. Phys. 169:193–214 (2001).

    Article  MATH  ADS  Google Scholar 

  6. D. Chandler, Statistical mechanics of isomerization dynamics in liquids and the transition state approximation, J. Chem. Phys. 68:2959–2970 (1978).

    Article  ADS  Google Scholar 

  7. J. R. Chaudhuri, S. K. Banik, B. C. Bag and D. S. Ray, Analytical and numerical investigation of escape rate for a noise driven bath. Phys. Rev. E 63:Art. 061111 (2001).

    Article  ADS  Google Scholar 

  8. C. Dellago, P. G. Bolhuis and P. L. Geissler, Transition path sampling. Adv. Chem. Phys. 123:1–78 (2002).

    Article  Google Scholar 

  9. W. E and E. Vanden-Eijnden, Metastability, conformation dynamics, and transition pathways in complex systems. In S. Attinger and P. Koumoutsakov eds., Lecture notes in computational science and engineering 39:35–68, (Springer, Berlin, 2004).

    Google Scholar 

  10. W. E, W. Ren and E. Vanden-Eijnden, Finite temperature string method for the study of rare events. J. Phys. Chem. B 109:6688–6693 (2005).

    Article  Google Scholar 

  11. W. E, W. Ren and E. Vanden-Eijnden, Transition pathways in complex systems: Reaction coordinates, isocommittor surfaces, and transition tubes. Chem. Phys. Lett. 413:242–247 (2005).

    Article  ADS  Google Scholar 

  12. W. E and E. Vanden-Eijnden, Toward a theory of transitions paths. J. Stat. Phys. 123:503–523 (2006)

  13. H. Eyring, J. Chem. Phys. 3:107 (1935).

    Article  ADS  Google Scholar 

  14. G. W. Ford, M. Kac and P. Mazur, Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6:504–515 (1965).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. G. W. Ford and M. Kac, On the Quantum Langevin Equation. J. Stat. Phys. 46:803–810 (1987).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. G. R. Fleming and G. Wolynes, Chemical dynamics in solution. Physics Today 43:36–43 (1990).

    ADS  Google Scholar 

  17. D. Frenkel and B. Smit, Understanding Molecular Dynamics, Academic Press, San Diego (1996).

    Google Scholar 

  18. C. W. Gardiner, Handbook of Stochastic Methods, 2nd edn., Springer, Berlin (1985).

    Google Scholar 

  19. D. Givon, R. Kupferman and A. M. Stuart, Extracting macroscopic dynamics: Model problems and algorithms. Nonlinearity 17:R55–R127 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. H. Grabert, Escape from a metastable well: The Kramers turnover problem. Phys. Rev. Lett. 61:1683–1686 (1988).

    Article  ADS  Google Scholar 

  21. O. H. Hald and R. Kupferman, Asymptotic and numerical analyses for mechanical models of heat baths. J. Stat. Phys. 106:1121–1184 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Horiuti, Bull. Chem. Soc. Jpn. 13:210 (1938).

    Article  Google Scholar 

  23. W. Huisinga, C. Schutte and A. M. Stuart, Extracting macroscopic stochastic dynamics: Model problems. Comm. Pure Appl. Math. 56:0234 (2003).

    Article  MathSciNet  Google Scholar 

  24. J. C. Keck, Disc. Faraday Soc. 33:173 (1962).

    Article  Google Scholar 

  25. R. Kupferman, Fractional Kinetics in Kac-Zwanzig heat bath models. J. Stat. Phys. 111:291–326 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Kupferman and A. M. Stuart, Fitting SDE models to nonlinear Kac-Zwanzig heat bath models. Phys. D-Nonlinear phenomena 199:279–316 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. R. Kupferman, A. M. Stuart, J. R. Terry and P. F. Tupper, Long term behavior of large mechanical systems with random initial data. Stoc. and Dyn. 2:533–562 (2002).

    Article  MathSciNet  Google Scholar 

  28. R. S. Maier and D. L. Stein, Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57:752–790 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  29. B. J. Matkowsky and Z. Schuss, The exit problem for randomly perturbed dynamical systems. SIAM J. App. Math. 33:365–382 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Pechukas, Ann. Rev. Phys. Chem. 32:159–177 (1981).

    Article  Google Scholar 

  31. E. Pollak, H. Grabert and P. Hänggi, Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem. J. Chem. Phys. 91:4073–4087 (1989).

    Article  ADS  Google Scholar 

  32. E. Pollak, S. C. Tucker and B. H. Berne, Variational transition-state theory for reaction rates in dissipative systems. Phys. Rev. Lett. 65:1399–1402 (1990).

    Article  ADS  Google Scholar 

  33. E. Pollak and P. Talkner, Activated rate processes: Finite-barrier expansion for the rate in the spatial-diffusion limit. Phys. Rev. E 47:922–933 (1993).

    Article  ADS  Google Scholar 

  34. E. Pollak, A. M. Berezhkovskii and Z. Schuss, Activated rate processes: A relation between Hamiltonian and stochastic theories. J. Chem. Phys. 100:334–339 (1994).

    Article  ADS  Google Scholar 

  35. W. Ren, E. Vanden-Eijnden, P. Maragakis and E. Weinan, Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide. J. Chem. Phys. 123:134109 (2005).

    Article  ADS  Google Scholar 

  36. A. M. Stuart and J. O. Warren, Analysis and experiments for a computational model of a heat bath. J. Stat. Phys. 97:687–723 (1999).

    Article  MATH  Google Scholar 

  37. Z. Schuss and B. J. Matkowsky, The exit problem: A new approach to diffusion across potential barriers. SIAM J. App. Math. 36:604–623 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  38. Z. Schuss, Singular perturbation methods on stochastic differential equations of mathematical physics. SIAM Rev. 22:119–155 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  39. C. Schütte and W. Huisinga, Biomolecular Conformations as metastable sets of Markov chains, Proceedings of the Thirty-Eighth Annual Allerton Conference on Communication, Control, and Computing, Monticello, Illinois: 1106–1115 (2000).

  40. F. A. Tal and E. Vanden-Eijnden, Transition state theory and dynamical corrections in ergodic systems. Nonlinearity 19:501–509 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. D. G. Truhlar and B. C. Garett, Ann. Rev. Phys. Chem. 35:159–189 (1984).

    Article  Google Scholar 

  42. M. Tuckerman, B. J. Berne and G.J. Martina, Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97:1990–2001 (1992).

    Article  ADS  Google Scholar 

  43. T. Uzer, C. Jaffé, J. Palacian, P. Yanguas and S. Wiggins, The geometry of reaction dynamics. Nonlinearity 15:957–992 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. E. Vanden-Eijnden and F. Tal, Transition state theory: Variational formulation, dynamical corrections, and error estimates. J. Chem. Phys. 123:184103 (2005).

    Article  ADS  Google Scholar 

  45. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159:98–103 (1967).

    Article  ADS  Google Scholar 

  46. H. Waalkens and S. Wiggins, Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be recrossed. J. Phys. A: Math. Gen. 37:L435–L445 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. E. Wigner, Trans. Faraday Soc. 34:29 (1938).

    Article  Google Scholar 

  48. R. Zwanzig, Nonlinear generalized langevin equations. J. Stat. Phys. 9:215–220 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ariel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariel, G., Vanden-Eijnden, E. Testing Transition State Theory on Kac-Zwanzig Model. J Stat Phys 126, 43–73 (2007). https://doi.org/10.1007/s10955-006-9165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9165-0

Keywords

Navigation