Skip to main content
Log in

Statistical Thermodynamics of Crystal Plasticity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This article is written in memory of Pierre Hohenberg with appreciation for his deep commitment to the basic principles of theoretical physics. I summarize recent developments in the theory of dislocation-enabled deformation of crystalline solids. This topic is especially appropriate for the Journal of Statistical Physics because materials scientists, for decades, have asserted that statistical thermodynamics is not applicable to dislocations. By use of simple, first-principles analyses and comparisons with experimental data, I argue that these people have been wrong, and that this field should now be revitalized because of its wide-ranging intellectual and technological importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taylor, G.I.: The mechanism of plastic deformation in crystals, Part 1—Theoretical. Proc. R. Soc. A 145, 362 (1934)

    Article  ADS  MATH  Google Scholar 

  2. Cottrell, A.H.: Dislocations and Plastic Flow in Crystals. Oxford University Press, London (1953)

    MATH  Google Scholar 

  3. Friedel, J.: Dislocations. Pergamon, Oxford (1967)

    MATH  Google Scholar 

  4. Hirth, J., Lothe, J.: Theory of Dislocations. McGraw Hill, New York (1968)

    MATH  Google Scholar 

  5. Cottrell, A.H.: In: Nabarro, F.R.N., Duesbery, M.S. (eds.) Dislocations in Solids. Elsevier, Amsterdam (2002)

    Google Scholar 

  6. Langer, J.S., Bouchbinder, E., Lookman, T.: Thermodynamic theory of dislocation-mediated plasticity. Acta Mater. 58, 3718 (2010)

    Article  Google Scholar 

  7. Kocks, U.F., Mecking, H.: Physics and phenomenology of strain hardening: the FCC case. Prog. Matls. Sci. 48, 171 (2003)

    Article  Google Scholar 

  8. Preston, D.L., Tonks, D.L., Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211 (2003)

    Article  ADS  Google Scholar 

  9. Gray III, G.T.: High-strain-rate deformation: mechanical behavior and deformation substructures induced. Annu. Rev. Mater. Res. 42, 285 (2012)

    Article  ADS  Google Scholar 

  10. Armstrong, R.W.: 60 Years of Hall–Petch: past to present nano-scale connections. Mater. Trans. 55, 2–12 (2014). (Special issue on strength of fine grained materials, The Japan Institute of Metals and Materials 2013)

    Article  Google Scholar 

  11. Langer, J.S.: Thermodynamic analysis of the Livermore molecular-dynamics simulations of dislocation-mediated plasticity. Phys. Rev. E 98, 023006 (2018)

    Article  ADS  Google Scholar 

  12. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475 (1994)

    Article  Google Scholar 

  13. Devincre, B., Hoc, T., Kubin, L.: Dislocation mean free paths and strain hardening of crystals. Science 320, 1745 (2008)

    Article  ADS  Google Scholar 

  14. LeSar, R.: Simulations of dislocation structure and response. Annu. Rev. Condens. Matter Phys. 5, 375 (2014)

    Article  ADS  Google Scholar 

  15. Zepeda-Ruiz, L.A., Stukowski, A., Oppelstrup, T., Bulatov, V.V.: Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550, 492 (2017)

    Article  ADS  Google Scholar 

  16. Langer, J.S.: Statistical thermodynamics of strain hardening in polycrystalline solids. Phys. Rev. E 92, 032125 (2015)

    Article  ADS  Google Scholar 

  17. Langer, J.S.: Thermodynamic theory of dislocation-enabled plasticity. Phys. Rev. E 96, 053005 (2017)

    Article  ADS  Google Scholar 

  18. Falk, M.L., Langer, J.S.: Deformation and failure of amorphous, solidlike materials. Annu. Rev. Condens. Matter Phys. 2, 353 (2011)

    Article  ADS  Google Scholar 

  19. Langer, J.S.: Thermal effects in dislocation theory II. Shear banding. Phys. Rev. E 95, 013004 (2017)

    Article  ADS  Google Scholar 

  20. Le, K.C., Tran, T.M., Langer, J.S.: Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel. Phys. Rev. E 96, 013004 (2017)

    Article  ADS  Google Scholar 

  21. Le, K.C., Tran, T.M., Langer, J.S.: Thermodynamic dislocation theory of adiabatic shear banding in steel. Scr. Mater. 149, 62 (2018)

    Article  ADS  Google Scholar 

  22. Chen, S.R., Maudlin, P.J., Gray, G.T.: In: Seventh International Symposium on Plasticity and Its Current Applications, pp. 623–626, A.S. Khan, ed. Cancun, Neat Press (1999)

  23. Meyers, M., Andrade, U., Chokshi, A.: The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metall. Mater. Trans. A 26A, 2881 (1995)

    Article  ADS  Google Scholar 

  24. Marchand, A., Duffy, J.: An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solids 36, 251 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JSL was supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division, DE-AC05-00OR-22725, through a subcontract from Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Langer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langer, J.S. Statistical Thermodynamics of Crystal Plasticity. J Stat Phys 175, 531–541 (2019). https://doi.org/10.1007/s10955-019-02221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02221-7

Keywords

Navigation