Skip to main content
Log in

Multiple Instance Classification via Successive Linear Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [1998]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [1997]; Long et al., Mach. Learn. 30(1):7–22, [1998]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple-instance problem with axis-parallel rectangles. Artif. Intell. 89, 31–71 (1998)

    Article  Google Scholar 

  2. Auer, P.: On learning from multi-instance examples: empirical evaluation of a theoretical approach. In: Proceedings of 14th International Conference on Machine Learning, pp. 21–29. Morgan Kaufmann, San Mateo (1997)

    Google Scholar 

  3. Long, P.M., Tan, L.: PAC learning axis aligned rectangles with respect to product distributions from multiple instance examples. Mach. Learn. 30(1), 7–22 (1998)

    Article  MATH  Google Scholar 

  4. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15, pp. 561–568. MIT Press, Cambridge (2003)

    Google Scholar 

  5. Zhang, Q., Goldman, S.A.: EM-DD: an improved multiple-instance learning technique. In: Neural Information Processing Systems 2001, pp. 1073–1080. MIT Press, Cambridge (2002)

    Google Scholar 

  6. Gartner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In: Sammut, C., Hoffmann, A. (eds.) Proceedings of 19th International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann, San Mateo (2002)

    Google Scholar 

  7. Ray, S., Craven, M.: Supervised versus multiple instance learning: an empirical comparison. In: Proceedings of 22nd International Conference on Machine Learning, Bonn, Germany, vol. 119, pp. 697–704. Assoc. Comput. Mach., New York (2005)

    Chapter  Google Scholar 

  8. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–279 (1995)

    MATH  Google Scholar 

  10. Mangasarian, O.L.: Generalized support vector machines. In: Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 135–146. MIT Press, Cambridge (2000). ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps

    Google Scholar 

  11. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)

    MATH  Google Scholar 

  12. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. In: Shavlik, J. (ed.) Proceedings of 15th International Conference on Machine Learning, San Francisco, California, pp. 82–90. Morgan Kaufmann, San Mateo (1998). ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps

    Google Scholar 

  13. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16–NIPS2003, pp. 49–56. MIT Press, Cambridge (2004)

    Google Scholar 

  14. Mangasarian, O.L.: Arbitrary-norm separating plane. Oper. Res. Lett. 24, 15–23 (1999). ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps

    Article  MathSciNet  MATH  Google Scholar 

  15. Murphy, P.M., Aha, D.W.: UCI Machine Learning Repository (1992). www.ics.uci.edu/~mlearn/MLRepository.html

  16. Bouckaert, R.R.: Choosing between two learning algorithms based on calibrated tests. In: Proceedings of 20th International Conference on Machine Learning, pp. 51–58 (2003)

  17. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

    Article  Google Scholar 

  18. Dunn, O.J.: Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  20. MATLAB: User’s Guide. The MathWorks, Inc., Natick, MA 01760 (1994–2006). http://www.mathworks.com

  21. ILOG: Incline Village, Nevada, ILOG CPLEX 9.0 User’s Manual (2003). http://www.ilog.com/products/cplex/

  22. Lee, Y.-J., Mangasarian, O.L.: RSVM: reduced support vector machines. In: Proceedings of First SIAM International Conference on Data Mining, Chicago, 5–7 April 2001. CD-ROM (2001). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps

  23. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: 15th International Conference on Machine Learning, San Francisco, CA. Morgan Kaufmann, San Mateo (1998)

    Google Scholar 

  24. Ramon, J., De Raedt, L.: Multi-instance neural networks, In: Proceedings of ICML-2000. Workshop on Attribute-Value and Relational Learning (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Mangasarian.

Additional information

This research was supported by National Science Foundation Grants CCR-0138308 and IIS-0511905.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangasarian, O.L., Wild, E.W. Multiple Instance Classification via Successive Linear Programming. J Optim Theory Appl 137, 555–568 (2008). https://doi.org/10.1007/s10957-007-9343-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9343-5

Keywords

Navigation